• Title/Summary/Keyword: High spatial density weather stations

Search Result 8, Processing Time 0.027 seconds

Effects of Observation Network Density Change on Spatial Distribution of Meteorological Variables: Three-Dimensional Meteorological Observation Project in the Yeongdong Region in 2019 (관측망 밀도 변화가 기상변수의 공간분포에 미치는 영향: 2019 강원영동 입체적 공동관측 캠페인)

  • Kim, Hae-Min;Jeong, Jong-Hyeok;Kim, Hyunuk;Park, Chang-Geun;Kim, Baek-Jo;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • We conducted a study on the impact of observation station density; this was done in order to enable the accurate estimation of spatial meteorological variables. The purpose of this study is to help operate an efficient observation network by examining distributions of temperature, relative humidity, and wind speed in a test area of a three-dimensional meteorological observation project in the Yeongdong region in 2019. For our analysis, we grouped the observation stations as follows: 41 stations (for Step 4), 34 stations (for Step 3), 17 stations (for Step 2), and 10 stations (for Step 1). Grid values were interpolated using the kriging method. We compared the spatial accuracy of the estimated meteorological grid by using station density. The effect of increased observation network density varied and was dependent on meteorological variables and weather conditions. The temperature is sufficient for the current weather observation network (featuring an average distance about 9.30 km between stations), and the relative humidity is sufficient when the average distance between stations is about 5.04 km. However, it is recommended that all observation networks, with an average distance of approximately 4.59 km between stations, be utilized for monitoring wind speed. In addition, this also enables the operation of an effective observation network through the classification of outliers.

Numerical Simulation of the Flood Event Induced Temporally and Spatially Concentrated Rainfall - On August 17, 2017, the Flood Event of Cheonggyecheon (시공간적으로 편중된 강우에 의한 홍수사상 수치모의 - 2017년 8월 17일 청계천 홍수사상을 대상으로)

  • Ahn, Jeonghwan;Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2018
  • This study identifies the cause of the accident and presents a new concept for safe urban stream management by numerical simulating the flood event of Cheonggyecheon on August 17, 2017, using rain data measured through a dense weather observation network. In order to simulate water retention in the CSO channel listed as one of the causes of the accident, a reliable urban runoff model(XP-SWMM) was used which can simulate various channel conditions. Rainfall data measured through SK Techx using SK Telecom's cell phone station was used as rain data to simulate the event. The results of numerical simulations show that rainfall measured through AWSs of Korea Meteorological Administration did not cause an accident, but a similar accident occurred under conditions of rainfall measured in SK Techx, which could be estimated more similar to actual phenomena due to high spatial density. This means that the low spatial density rainfall data of AWSs cannot predict the actual phenomenon occurring in Cheonggyecheon and safe river management needs high spatial density weather stations. Also, the results of numerical simulation show that the residual water in the CSO channel directly contributed to the accident.

A Study on Quality Control Method for Minutely Rainfall Data (분 단위 강우자료의 품질 개선방안에 관한 연구)

  • Kim, Min-Seok;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.319-326
    • /
    • 2015
  • Rainfall data is necessary component for water resources design and flood warning system. Most analysis are used long-term hourly data of surface synoptic stations from the Meteorological Administration, Ministry of land, Infrastructure and Transport and others. However, It will be used minutely data of more high density automatic weather stations than surface synoptic stations expecting to increase the frequency of heavy precipitation. But minutely data has a problem about quality of rainfall data by auto observation. This study analyzed about quality control method using automatic weather station's minutely rainfall data of meteorological administration. It was performed assessment of the quality control that was classified quality control of miss Data, outlier data and rainfall interpolation. This method will be utilized when hydrological analysis uses minute rainfall data.

Deduction of Data Quality Control Strategy for High Density Rain Gauge Network in Seoul Area (서울시 고밀도 지상강우자료 품질관리방안 도출)

  • Yoon, Seongsim;Lee, Byongju;Choi, Youngjean
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.245-255
    • /
    • 2015
  • This study used high density network of integrated meteorological sensor, which are operated by SK Planet, with KMA weather stations to estimate the quantitative precipitation field in Seoul area. We introduced SK Planet network and analyzed quality of the observed data for 3 months data from 1 July to 30 September 2013. As the quality analysis result, we checked most SK Planet stations observed similar with previous KMA stations. We developed the real-time quality check and adjustment method to reduce the error effect for hydrological application by missing and outlier value and we confirmed the developed method can be corrected the missing and outlier value. Through this method, we used the 190 stations(KMA 34 stations, SK Planet 156 stations) that missing ratio is less than 20% and the effect of the outlier was the smallest for quantitative precipitation estimation. Moreover, we evaluated reproducibility of rainfall field high density rain gauge network has $3km^2$/gauge. As the result, the spatial relative frequency of rainfall field using SK Planet and KMA stations is similar with radar rainfall field. And, it supplement the blank of KMA observation network. Especially, through this research we will take advantage of the density of the network to estimate rainfall field which can be considered as a very good approximation of the true value.

Analysis on Effective Range of Temperature Observation Network for Evaluating Urban Thermal Environment (도시 열환경 평가를 위한 기온관측망 영향범위 분석)

  • Kim, Hyomin;Park, Chan;Jung, Seunghyun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.69-75
    • /
    • 2016
  • Climate change has resulted in the urban heat island (UHI) effect throughout the globe, contributing to heat-related illness and fatalities. In order to reduce such damage, it is necessary to improve the climate observation network for precise observation of the urban thermal environment and quick UHI forecasting system. Purpose: This study analyzed the effective range of the climate observation network and the distribution of the existing Automatic Weather Stations (AWS) in Seoul to propose optimal locations for additional installment of AWS. Method: First, we performed quality analysis to pinpoint missing values and outliers within the high-density temperature data measured. With the result from the analysis, a spatial autocorrelation structure in the temperature data was tested to draw the effective range and correlation distance for each major time period. Result: As a result, it turned out that the optimal effective range for the climate observation network in Seoul in July was a radius of 2.8 kilometers. Based on this result, population density, and temperature data, we selected the locations for additional installment of AWS. This study is expected to be used to generate urban temperature maps, select and move measurement locations since it is able to suggest valid, specific spatial ranges when the data measured in point is converted into surface data.

An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae (기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정)

  • Jo, Ji-yeong;Lee, Seung-Jae;Choi, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • To prevent and mitigate damage to farms due to heavy snowfall, snow weight information should be provided in addition to snow depth. This study reviews four formulae regarding snow density and weight used in extant studies and applies them in Suwon area to estimate snow weight in Korea. We investigated the observed snow depth of 94 meteorological stations and automatic weather stations (AWS) data over the past 30 years (1988-2017). Based on the spatial distribution of snow depth by area in Korea, much of the fresh snow cover, due to heavy snowfall, occurred in Jeollabuk-do and Gangwon-do. Record snowfalls occurred in Gyeongsangbuk-do and Gangwon-do. However, the most recent heavy snowfall in winter occurred in Gyeonggi-do, Gyeongsangbuk-do, and Jeollanam-do. This implies that even if the snow depth is high, there is no significant damage unless the snow weight is high. The estimation of snow weight in Suwon area yielded different results based on the calculation method of snow density. In general, high snow depth is associated with heavy snow weight. However, maximum snow weight and maximum snow depth do not necessarily occur on the same day. The result of this study can be utilized to estimate the snow weight at other locations in Korea and to carry out snow weight prediction based on a numerical model. Snow weight information is expected to aid in establishing standards for greenhouse design and to reduce the economic losses incurred by farms.

Comparison of Several Heat Stress Indices for the 2016 Heat Wave in Daegu (대구의 2016년 폭염시기 열 스트레스 지표의 비교)

  • Kim, Ji-Hye;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1399-1405
    • /
    • 2017
  • We compared the spatial distribution of several heat stress indices (the Wet-Bulb Globe Temperature(WBGT) index, Environmental Stress Index (ESI), and Modified Discomfort Index(MDI)) for the heat wave of June 6~August 26, 2016, in Daegu. We calculated the heat stress indices using data from the high density urban climate observation network in Daegu. The observation system was established in February. 2013. We used data from a total of 38 air temperature observation points (23 thermometers and 18 automatic weather stations). The values of the heat stress indices indicated that the danger level was very high from 0900-2000h in downtown Daegu. The daily maximum value of the WBGT was greater than or equal to $35^{\circ}C$. The differences in the heat stress indices from downtown and rural areas were higher in the daytime than at nighttime. The maximum difference was about 4 before and after 1400h, and the time variations of the heat stress indices corresponded well. Thus, we were able to confirm that the ESI and MDI can be substituted with the WBGT index.

A Method to Evaluate the Radar Rainfall Accuracy for Hydrological Application (수문학적 활용을 위한 레이더 강우의 정확도 평가 방법)

  • Bae, Deg-Hyo;Phuong, Tran Ahn;Yoon, Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1039-1052
    • /
    • 2009
  • Radar measurement with high temporal and spatial resolutions can be a valuable source of data, especially in the areas where rain gauge installment is not practical. However, this kind of data brings with it many errors. The objective of this paper is to propose a method to evaluate statistically the quantitative and qualitative accuracy at different radar ranges, temporal intervals and raingage densities and use a bias adjustment technique to improve the quality of radar rainfall for the purpose of hydrological application. The method is tested with the data of 2 storm events collected at Jindo (S band) and Kwanak (C band) radar stations. The obtained results show that the accuracy of radar rainfall estimation increases when time interval rises. Radar data at the shorter range seems to be more accurate than the further one, especially for C-band radar. Using the Monte Carlo simulation experiment, we find out that the sampling error of the bias between radar and gauge rainfall reduces nonlinearly with increasing raingage density. The accuracy can be improved considerably if the real-time bias adjustment is applied, making adjusted radar rainfall to be adequately good to apply for hydrological application.