• Title/Summary/Keyword: High temperature fermentation

Search Result 338, Processing Time 0.026 seconds

Application of Thermotolerant Yeast at High Temperature in Jar-fermentor Scale.

  • Sohn, Ho-Yong;Kim, Young-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.316-321
    • /
    • 1994
  • We investigated the possibility of industrial application and economit process of high temperature fermentation by thermotolerant alcohol producing yeasts as previously reported. From the 20% glucose media, the RA-74-2 produced 11.8% (v/v) ethanol at $32^{\circ}C$ (0.5% inoculum) and 10.6% (v/v) ethanol at $40^{\circ}C$ (3% inoculum), respectively. Also, 11.3% (v/v) ethanol was produced for 96 hours in the temperature-gradient fermentation. These results suggest that the RA-74-2 could isuccessfully be applied to save the cooling water and energy in industrial scale without re-investment or modification of established fermentation systems. When potato starch was used as the substrate for the RA-74-2, high temperature fermentation above $40^{\circ}C$ was more appropriate for industrial utilization because organic nitrogen was not necessary to economical fermentation. As the naked barley media just prior to industrial inoculation, taken from the Poongkuk alcohol industry Co., were used, 9.6% (v/v) ethanol was produced at $40^{\circ}C$ for 48 hours in jar-fermentor scale (actually, 9.5-9.8% (v/v) ethanol was produced at 30~$32^{\circ}C$ for 100 hours in industrial scale). The ethanol productivity was increased by the high glucoamylase activity as well as the high metabolic ratio at $40^{\circ}C$ Therefore, if the thermotolerant yeast RA-74-2 would be used in industrial scale, we could obtain a high productivity and saving of the cooling water and energy. Meanwhile, the RA-912 produced 6%(v/v) ethanol in 10% glucose media at $45^{\circ}C$ and showed the less ethanol-tolerance compared with industrial strains. As the produced alcohol was recovered by the vacuum evaporator at $45^{\circ}C$ in 15% glucose media, the final fermentation ratio was enhanced (76% of theoretical yields). This suggest that a hyperproductive process could be achieved by a continuous input of the substrate and continuous recovery of the product under vacuum in high cell-density culture.

  • PDF

Effect of Fermentation Temperature on Free Sugar, Organic Acid and Volatile Compounds of Kakdugi (깍두기의 발효숙성온도가 유리당, 유기산 및 향기성분에 미치는 영향)

  • 장명숙;김성단;허우덕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.16-23
    • /
    • 1998
  • Effect of Fermentation temperature on the changes of chemical components in Kakudgi during fermentation was investigated by measuring free sugar, organic acid and volatile compounds up to 57 days at several temperatures. The mannitol was increased in palatable period in contrast with those of other free sugars. The higher the initial fermentation temperature was and the longer the initial fermentation time at 2$0^{\circ}C$ was, the faster the second increasing period was and the less the initial contents was. Lactic acid was increased 6~31 times from a little amount at the initial period. The higher the initial fermentation temperature was and the more the increasing content was. But malic acid which was abundant(55.1% of total nonvolatile organic acid) in the initial fermentation period was remarkably decreased in the palatable period. The change of the sulfides among the volatile compounds was remarkable. Methyl allyl sulfide which was a little in the initial fermentation period was remarkably increased in the final fermentation period, and the correlation coefficients between the content of methyl allyl sulfide and aroma in sensory evaluation were high. It could be suggested that the fermentation temperature should be set to 4$^{\circ}C$ after fermentating at 2$0^{\circ}C$ for 36 hours in the view point of keeping the Kakdugi taste and quality well because of high content of free sugar and nonvolatile organic acids.

  • PDF

Effect of Fermentation Temperature on the Production of high content Alcohol (고농도 알코올 생성을 위한 온도의 영향)

  • 유연우;권정주
    • Korean Journal of Microbiology
    • /
    • v.20 no.2
    • /
    • pp.67-72
    • /
    • 1982
  • The effect of fermentation temperature on the production of high content alcohol has been investigated with high substrate concentration. The maximum specific growth rate, ${\mu}max\;was\;0.461hr^{-1}\;at\;35^{\circ}C$ which was the highest, whereas the maximum biomass concentration waas 8.7g/l at $25^{\circ}C$, at the growth rate lower than at $35^{\circ}C$. Approximately 140g/l of ethanol was produced in the temperature range of 20 to $25^{\circ}C$ with nearly complete comsumption of the substrate. Extended fermentation time has been required at lower temperatures, however, for the maximum values of biomass concentration and alcohol content, hence higher ethanol productivity, as the temperature was elevated to $40^{\circ}C$. The viability of yeasts was greatly improved by lowering the fermentation temperature down to $25^{\circ}C$ and also extended survival of the cells has been observed at lower fermentation temperatures, although the ethanol concentration of both waas higher.

  • PDF

Large Scale of Ethanol Fermentation from Sweet Potato Cooked at Low and High Temperature (고구마의 저온증자 및 고온증자에 의한 공업적 규모의 주정발효)

  • 유병호;김운식;김성두;최명호;남기두;하미숙
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.233-237
    • /
    • 1986
  • Possibility of large scale ethanol fermentation from sweet potato were compared with low temperature and high temperature rooking. Productivity of sweet potato mash cooked at 9$0^{\circ}C$ for 120 minutes was higher than that mash cooked at 124$^{\circ}C$ for 60 minutes and also fermentation yield ai low temperature cooking was better than high temperature cooking. Low temperature cooking was successfully carried out on a large scale. In conclusion, low temperature cooking on large scale should be reduce energy consumption by approximate 30% compared with high temperature cooking.

  • PDF

Effect of Fermentation Temperature on Quality of Doenjang (숙성온도가 된장의 품질에 미치는 영향)

  • Kim, Moon-Seok;Kim, Eun-Mi;Chang, Kyu-Seob
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • There were four types of Doenjang fermentation as following conditions for investigation ; 1) low temperature fermentation at $13^{\circ}C$ for 180 days, 2) low temperature at $13^{\circ}C$ for 7 days to room temperature at $30^{\circ}C$ for 10 days, to low temperature at $13^{\circ}C$ for 163 days, and for 173 days, 3) low temperature at $13^{\circ}C$ 7 days to room temperature at $30^{\circ}C$, 4) room temperature at $30^{\circ}C$ for 180 days. There were no changes of moisture, NaCl and total nitrogen content during fermentation period of four types conditions, but pH and amino type nitrogen decreased in room temperature at $30^{\circ}C$ for 180 days. It required 3 times more fermentation period until same quantity of the amino type nitrogen. The low temperature fermentation sample was lower than room temperature fermentation sample in pH and amino type nitrogen. The yeast decreased in low temperature fermentation sample taken 15 to 30 days longer than room temperature sample. The yeast is increased up to 30 days, and decreased little by little. After 60 days, it remained a few without effectiveness on the Doenjang quality. The low temperature fermentation sample showed brighter than room temperature fermentation sample. Different fermentation condition affected Doenjnag quality, especially, low temperature fermentation sample showed bright color in Doenjnag. So low temperature fermentation must be expected as good method for getting high quality Doenjnag.

  • PDF

The Fermentation Characteristics of Newly Selected Thermotolerant Yeasts at High Temperature

  • Sohn, Ho-Yong;Park, Wan;Jin, Ing-Nyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.222-229
    • /
    • 1994
  • In order to develop a method of economical production and to reduce energy-consumption in fuel alcohol production, we investigated the fermentation characters of two newly selected thermotolerant yeasts. The RA-74-2 showed stable and superior fermentability between 30 and $40^{\circ}C$ in 20% glucose media in comparison to the industrial strains. The optimum concentration of glucose for economical fermentation at $40^{\circ}C$ was 15-18%, and organic nitrogen was necessary for a satisfactory fermentation. The optimum pH was 4.0 and aeration was adversed for high temperature fermentation. Agitation was an important factor at $40^{\circ}C$ and the addition of magnesium ion 0.2% was required in this experiment. When the inoculum was increased, ethanol productivity as well as the speed of fermentation increased. On the other hand RA-912, which can grow at $48^{\circ}C$, showed similar fermentability between 30-$45^{\circ}C$ in 20% glucose media As the concentration of substrate decreased, fermentation ratio increased at $45^{\circ}C$ (45%, 65%, 95% fermentation ratio in 20%, 15%, 10% glucose media, respectively). Also, requirement of organic nitrogen and magnesium ion in RA-912 was similar in RA-74-2. The optimum pH for fermentation was 5.0, and the effects of agitation were enhanced at $37^{\circ}C$ than at $45^{\circ}C$. As the inoculum was increased, fermentation speed became more enhanced but the ethanol productivity was less affected. RA-912 showed fermentability with various substrates. Among the substrates used, inulin was the most promising substrate for the high-temperature fermentation. When 14.5% inulin was used as the substrate, 93% and 55% fermentation ratios were shown at $37^{\circ}C$ and $45^{\circ}C$, respectively.

  • PDF

Large Scale Alcohol Fermentation with Cassava Slices at tow Temperature (Cassava 전분의 저온 증자에 의한 공업적 규모의 알코올 발효)

  • Ryu, Beung-Ho;Nam, Ki-Du
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.75-79
    • /
    • 1987
  • The conventional alcohol fermentation method requires a large amount of energy for cooking the starchy raw materials prior to saccharification. The aim of this study was to compare the possibility of large scale alcohol fermentation from cassava slices were compared in low and high temperature cooking systems. The same amount of saccharifying and liquefying enzymes were used for cooking at low and high temperature. At low temperature cooking, conversion of glucose consumed in fermented mash to alcohol was 0.468g alcohol per g glucose of which was higher yield than that obtained at high temperature.

  • PDF

Temperature Effects and Optimization for Ethanol Fermentation (에탄올 발효에서의 온도의 영향 및 발효공정의 최적화)

  • 박종경;백승윤;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.619-623
    • /
    • 1989
  • The effects of temperature on yeast growth and ethanol production were investigated in batch cultures. The maximum specific growth rate of yeast was obtained at 36$^{\circ}C$ and the maximum specific production rate of ethanol was obtained at 33$^{\circ}C$. A mathematical model was employed to describe the temperature effects in ethanol fermentation and the parameters in the model were expressed as a function of temperature. Optimum temperature control strategy, from the simulation result, consists of starting the fermentation at high temperature and lowering the temperature as the fermentation proceeds.

  • PDF

Effects of the Percentages of Yeast, Fermentation Time and Oven Temperature on the Quality Characteristics of Rice Bread (이스트 첨가 수준, 발효 시간 및 오븐 온도에 따른 쌀빵 품질 특성)

  • Kim, Sang Sook;Chung, Hae Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.4
    • /
    • pp.371-378
    • /
    • 2019
  • This paper investigated the effects of the percentages of yeast and fermentation time as well as the top and bottom temperature of oven on the baking properties of rice bread. The specific volume of the dough decreased as the amount of added yeast and fermentation time increased. When 1.5% yeast was added at 60 min of fermentation time, the shape of the rice bread showed the largest volume, high appearance and a round shape. The top and bottom temperature of the oven on the baking characteristics of rice bread were affected by the baking time. When the top and bottom temperature of the oven at 200 and $140^{\circ}C$, and 200 and $170^{\circ}C$, the baking time was 20 min. When the top and bottom temperature of oven at 140 and $170^{\circ}C$, the baking time was 40 min. When the top and bottom temperature of the oven were 170 and $170^{\circ}C$, the shape of the rice bread indicated the largest volume, high appearance and a round shape. The results of this study revealed that the replacement of rice flour with 1.5% yeast, 60 min of fermentation time, and the top and bottom temperature of oven at $170-170^{\circ}C$ are effective for rice bread.

The Effect of Temperature and Time on Physicochemical, Microbiological Properties and Sensory Analysis of Dongchimi during Fermentation and Storage (발효와 저장 중 온도와 시간 변화에 따른 동치미 품질 특성)

  • Cho, Mi Sook;Na, Yeseul
    • Journal of the Korean Society of Food Culture
    • /
    • v.35 no.5
    • /
    • pp.450-458
    • /
    • 2020
  • This study examined the optimal temperature and time conditions to maintain high quality Dongchimi during the fermentation and storage period. Dongchimi was fermented at low (5℃), medium (10 and 15℃), and high (20℃) temperatures until the acidity reached 0.2, 0.3, and 0.4%. respectively. From the consumer's preference test enrolling five consumers, Dongchimi fermented at 15℃ until an acidity of 0.3% (for approximately six days) was evaluated to be the optimal status because of its high score of overall acceptance, taste, and odor of consumers. To determine the optimal storage temperature of fermentation, Dongchimi was stored at three different temperatures (-1, 2, 5℃) for four weeks after fermenting at 15℃ for six days. During the storage period, most of the physicochemical properties (pH, acidity, reducing sugar content, and organic acid) and microbiological properties changed significantly in the 2 and 5℃ groups, resulting in a significant change in descriptive sensory analysis of Dongchimi. These results indicate that fermentation at 15℃ and storage at -1℃ for Dongchimi enables it to maintain the best quality for a long time.