• Title/Summary/Keyword: High voltage divider

Search Result 58, Processing Time 0.022 seconds

Fabrication and Evaluation of AC 400 kV High Voltage Divider using Electric Field Sensor (전기장 센서를 이용한 교류 400 kV 고전압 분압기의 제작 및 평가)

  • Lee, Sang-Hwa;Han, Sang-Gil;Jung, Jae-Kap;Kang, Jeon-Hong;Kim, Yoon-Hyoung;Jeong, Jin-Hye;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.265-269
    • /
    • 2008
  • Output voltage value of AC high voltage source has usually been obtained by measuring the low arm voltage of high voltage divider or the secondary voltage of high voltage transformer. In this study, we have fabricated the AC 400 kV high voltage divider using high voltage electrode and electric field measurement sensor. The dividing ratio of the fabricated 400 kV high voltage divider was evaluated using reference 400 kV capacitive divider. The dividing ratio of 400 kV high voltage divider is found to be 12,322 and has the good linearity within 0.63 % against AC high voltage up to 400 kV. Therefore, the developed 400 kV high voltage divider could evaluate 400 kV high voltage supply and voltage divider used in industry.

Measurement Range Extension of AC High Voltage using two 200 kV Capacitive Dividers (200 kV 용량형 분압기 2대를 이용한 교류 고전압 측정범위 확장)

  • Jung, Jae-Kap;Lee, Sang-Hwa;Kang, Jeon-Hong;Kim, Myung-Soo;Kim, Yoon-Hyoung;Han, Sang-Gil;Jeong, Jin-Hye;Han, Sang-Ok;Joung, Jong-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The output voltage value of AC high voltage source has been usually obtained by multiplying low voltage value measured at both terminals of low voltage resistor by the dividing ratio of the high voltage capacitive divider. From the dividing ratio determined of each 200 kV capacitive divider, we have developed step-up method for measuring the output voltage up to 400 kV using two same type of 200 kV capacitive dividers connected in series. The theoretical dividing ratio of 400 kV capacitive dividers connected in series coincides with that of manufacturer's certification within measurement uncertainty. Thus, this developed step-up method makes it possible to extend the range of output voltage from 200 kV to 400 kV. Furthermore, The dividing ratio of divider under test obtained using this step-up method is consistent with that obtained using one 200 kV high voltage divider within corresponding uncertainties.

A Study on the Step Response Characteristics in Shielded Resistor Divider for Switching Impulse Voltage (개폐 충격전압 측정용 쉴드 저항분압기의 직각파 특성에 관한 연구)

  • Kim, Ik-Su;Lee, Hyeong-Ho;Jo, Jeong-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.777-784
    • /
    • 1999
  • Since the ultra-high voltage power apparatus are recommended to withstand switching surge generated from the electric power system, the switching impulse voltage is generally used to verify this requirement at the testing laboratories. Recently, the international standard(IEC 60060-2) related to the high voltage measurement techniques is revised requiring a traceability of measuring system for high voltage measurements. In this paper, a reference divider for switching impulse voltage is developed satisfying the revised. IEC standard and the possibility of applications has been investigated. Therefore, the characteristics of the high and low voltage side resistor and the shielding ring have been analyzed including the step response characteristics of the prototype divider. Throughout various efforts, it is confirmed that our measuring device has shown compatible characteristics as a reference divider.

  • PDF

Development for Measurement Range Extension Technique of AC High Voltage Source using Parallel Plates Electrode and Electric Field Sensor (평행판 전극과 전기장 센서를 이용한 교류 고전압 발생원의 측정범위 확장기술 개발)

  • Kang, Jeon-Hong;Ryu, Jae-Cheon;Lee, Sang-Hwa;Kim, Kyu-Tae;Kim, Myung-Soo;Han, Sang-Ok;Jung, Jae-Kap
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.446-451
    • /
    • 2006
  • The output voltage value of AC high voltage source has been usually measured by employing the high voltage divider of inductive or capacitive type. In the study, we have developed a new method for measuring the output voltage up to 60kV using parallel plates electrode and electric field sensor, which are constructed by home-made. Unlikely the conventional method using a high voltage divider, this developed method makes it possible to extend the range of output voltage from known low voltage measurement to high voltage measurement. From the linearity measured between electric field and applied voltage in the output voltage range of 1kV-30kV, the output voltage value up to 60kV can be obtained by the electric field measurement using the electric field sensor. The output voltage value obtained using the method is consistent with that obtained using high voltage divider within corresponding uncertainties.

Improvement of Measuring Capacity of the DC High-voltage Divider for a National High-voltage Standard (국가 고전압 표준용 직류고전압 분압기의 측정능력 향상)

  • Lee, Sang-Hwa;Jang, Seok-Myeong;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1622-1625
    • /
    • 2014
  • The main measurement uncertainty factors in DC high-voltage dividers for a national high-voltage standard are the measurement uncertainty of low-voltage arm and the stability of a high-voltage supply. In this study, the uncertainties by the two factors are greatly improved. As a result the measurement uncertainty for the DC high-voltage divider is reduced from $16{\times}10^{-6}(k=2)$ to $8{\times}10^{-6}(k=2)$ which is at international level.

Precise High Voltage Measurement System Using Ceramic Stack Element for Voltage Divider (분압용 세라믹 적층 소자를 이용하 정밀 고전압 계측 시스템)

  • 윤광희;류주현;박창엽;정영호;하복남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.396-401
    • /
    • 2000
  • In order to accurately measure the high voltage of 22.9[kV] power distribution lines we investigated the temperature dependence of measuring voltage on the number of stack layers in the voltage measurement system made from single and stack voltage divider capacitors (22, 44, 66 layers, respectively). Temperature coefficient of dielectric constant(TC$\varepsilon_{{\gamma}}$/)of voltage divider capacitors which were fabricated by BaTi $O_3$system ceramics showed the variations from -2.28% to +1.69% in the range of -25[$^{\circ}C$] ~50[$^{\circ}C$]) was decreased with increasing of stack number and the stack element of 66 layers showed the least error of $\pm$0.87%or of $\pm$0.87%.

  • PDF

A Study on the step response characteristics in shielded resistor divider for full lightning impulse voltage (전파 뇌충격전압 측정용 쉴드저항분압기의 직각파 특성에 관한 연구)

  • 김익수;이형호;조정수;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.283-288
    • /
    • 1996
  • This paper presents the development technology of standard shielded resistor divider for full lightning impulse voltage. The ability of large-capacity power apparatus to withstand lighting stroke is usually evaluated by means of full lightning impulse voltage. Lightning impulse voltage test has been essential to evaluate the insulation performance of electrical power apparatus. Recently international standard (IEC 60) on high voltage measurement techniques is being revised and requests a formal traceability of high voltage measurements. Therefore, general interest for this area has grown considerably during last years, and several international intercomparisons have already completed worldwide, i.e. Europe, Japan, America etc., In this viewpoint, we have also investigated the step response of the standard shielded resistor divider, which satisfies the IEC recommendation.

  • PDF

A Design of Voltage Controlled Oscillator and High Speed 1/4 Frequency Divider using 65nm CMOS Process (65nm CMOS 공정을 이용한 전압제어발진기와 고속 4분주기의 설계)

  • Lee, Jongsuk;Moon, Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.107-113
    • /
    • 2014
  • A VCO (Voltage Controlled Oscillator) and a divide-by-4 high speed frequency divider are implemented using 65nm CMOS technology for 60GHz wireless communication system. The mm-wave VCO was designed by NMOS cross-coupled LC type using current source. The architecture of the divide-by-4 high speed frequency divider is differential ILFD (Injection Locking Frequency Divider) with varactor to control frequency range. The frequency divider also uses current sources to get good phase noise characteristics. The measured results show that the VCO has 64.36~67.68GHz tuning range and the frequency divider divides the VCO output by 4 exactly. The high output power of 5.47~5.97dBm from the frequency divider is measured. The phase noise of the VCO including the frequency divider are -77.17dBc/Hz at 1MHz and -110.83dBc/Hz at 10MHz offset frequency. The power consumption including VCO is 38.4mW with 1.2V supply voltage.

High Quality Transient Voltage Measuring Device Using Optical Technique (광기법을 이용한 고정도 과도전압측정기)

  • Lee, Bok-Hee;Kil, Gyung-Suk;Jeon, Duk-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.441-443
    • /
    • 1995
  • A new optical-resistive voltage divider, which consists of light emitting diode, optic fiber, PIN-photo diode and a high qualify shielding resistive divider, whose total response time is 7.35 [ns], has been obtained. The optical to electrical signal converter was constructed with GaAsP series light emitting diode. The response characteristics have been verified by applying the Marx impulse voltage generator experimentally. Comparing with the performance of conventional resistive voltage divider, the characteristics of the proposed optical-resistive voltage divider are more excellent in step response and less sensitive to electromagnetic interference.

  • PDF

Development of Standard Resistor Divider for Full Lightning Impulse Voltage (전파 뇌충격전압 측정용 표준 저항분압기의 개발)

  • Kim, Ik-Soo;Moon, In-Wook;Kim, Min-Kyu;Kim, Yung-Bae;Kim, Jin-Gi;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1633-1635
    • /
    • 1994
  • This paper presents the development technology of standard resistor divider for full lightning impulse voltage. The ability of high voltage bulk power equipment to withstand lighting stroke is usually evaluated by means of full lightning impulse voltage. Lightning impulse voltage test has been essential to evaluate the insulation performance of electrical power apparatus. Recently International standard (IEC 60) on high voltage measurement techniques is being revised and requests a formal traceability of high voltage measurements. Therefore, general interest for this area has grown considerably during last years, and several international intercomparisions have been completed already worldwide, i.e. Europe, Japan, America etc.. In this viewpoint, we have also investigated the standard resistor divider with shield, which satisfies the IEC recommendation.

  • PDF