• Title/Summary/Keyword: High-efficiency induction motor

Search Result 162, Processing Time 0.025 seconds

A Study on Development of Small Motor Core Die for High Efficiency Induction Motor (고효율 유도전동기 소형 모터코어 금형개발에 관한 연구)

  • Lim, Sae-Jong;Kim, Sei-Hwan;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.455-460
    • /
    • 2010
  • The high-efficiency induction motor reduces the generation loss of conventional induction motors and saves energy with less electricity consumed, enabling the return of initial facilities investments on a shorter-term basis due to its low operation cost and allowing the extension of the life of the motor. Poscore has entered the phase of development of high-efficiency induction motor based on its experiences to date in cooperation with electricity researchers. This paper examines the development of the small motor die for the high-efficiency induction motor.

A Study on Design and Manufacture of the Prototype Die for High-efficiency Induction Motor (고효율 유도전동기용 프로토 타입 금형 설계 및 제작에 관한 연구)

  • Lim, Sae-Jong;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2173-2178
    • /
    • 2009
  • The die technology of a high-efficiency induction motor is an important technology for manufacturing the core (iron core), which is the major part of a high-efficiency induction motor. It is also an essential technology in enhancing national competitiveness. In this study, the core of a high-efficiency induction motor was designed and manufactured as 2 prototype dies: one is for small-size, and the other is for large-size. They are then tested by attaching in press, the result are considered.

A Study on High Efficiency Vector Controlled Induction Motor Drive System (고효율 벡터제어 유도전동식 구동 시트템에 관한 연구)

  • Kim, Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1174-1182
    • /
    • 1990
  • A hgih efficiency and good dynamic performance drive system of an induction motor is presented in this paper using vector control technique. If the induction motor is driven under light loads with rated flux, the iron loss is excessively large compared with the copper loss, resulting in poor motor efficiency. High efficiency drive of an induction motor can be achieved by adjusting the flux level which leads the total motor loss to be a minimum value. Generally reducing the flux degrades the dynamic performance, but the dynamic performance of the proposed system is also maintained high. If the d-axis is coincident with rotor flux phasor in synchronous rotating reference frame, the stator current can be decoupled as flux component and torque component. At steady state, the developed motor torque is proportional to the product of the flux and torque component. The combination of the two components minimizing the motor loss could be found with numerical method. As the procedure to obtain the optimal combination is too hard, it is found experimentally. The system block diagram is suggested for maximum efficiency control. The proposed system is studied through digital simulation and verified with experiment. The experimental results show the possiblity of a high efficiency drive with good dynamic performance of maximum efficiency control.

  • PDF

Comparison of Loss Characteristics of High-Efficiency Induction Motor by Parameter Measurement Test (정수 측정 시험에 의한 고효율 유도 전동기의 손실 특성 비교)

  • Pyon, H.S.;Kim, S.C.;Yang, S.H.;Hahn, S.C.;Joo, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.318-320
    • /
    • 1999
  • Electric motor transforms electric power into mechanical power. It is important to increase efficiency of motor to save energy and to decrease operating cost. In this paper, some parameters and losses of high-efficiency induction motor and standard induction motor are measured by blocked-rotor test and no-load test. Operational parameters of high-efficiency induction motor that are compared with those of standard motor.

  • PDF

Optimizing Design Variables for High Efficiency Induction Motor Considering Cost Effect by Using Genetic Algorithm

  • Han, Pil-Wan;Seo, Un-Jae;Choi, Jae-Hak;Chun, Yon-Do;Koo, Dae-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.948-953
    • /
    • 2012
  • The characteristics of an induction motor vary with the number of parameters and the performance relationship between the parameters also is implicit. In case of the induction motor design, we generally should estimate many objective physical quantities in the optimization procedure. In this article, the multi objective design optimization based on genetic algorithm is applied for the three phase induction motor. The efficiency, starting torque, and material cost are selected for the objectives. The validity of the design results is also clarified by comparison between calculated results and measured ones.

A Study on Energy Saving of the Motor Cooling System with an Inverter (INVERTER를 응용한 MOTOR 냉각 제어시스템의 전력절감에 관한 연구)

  • Kim, Ki-Hong;Jung, Jee-Hoon;Kwon, Bong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.611-613
    • /
    • 2004
  • This paper is concerned with the simulation and determination of the input voltage and frequency for the optimal efficiency operation of induction motors. In general, induction motors have a specific character that operation efficiency is dropped sharply at the light roads condition. Consequently, if the induction motor is controlled by high efficiency using the VVVF(variable voltage variable frequency) control methods at optimal values, the entire system can obtain the substantial energy savings from the efficiency improvement in induction motors. In this paper, optimal slip is derived from the modeling of an induction motor and the optimal hybrid-control method is suggested by the simulation of the proposed algorithm for a 3-phase induction motor.

  • PDF

Maximum Efficiency Drive of Vector-Controlled Induction Motors (벡터제어 유도전동기의 최대효율 운전)

  • Yoon, Duck-Yong;Choe, Gyu-Ha;Hong, Soon-Chan;Baek, Soo-Hyun;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.27-37
    • /
    • 1996
  • This paper proposes the control algorithm for maximum efficiency drive of PWM inverter - induction motor system with high dynamic performance. If the induction motor is driven under light load with rated magnetizing current, the Iron loss is excessively large compared with the codder loss which results in doer motor efficiency. Maximum efficiency drive of an induction motor can be achieved by controlling the magnetizing current to satisfy the optimal ratio that leads the total motor loss to be a minimum value at a given speed. The proposed control algorithm essentially uses vector control technique and adopts voltage decoupling control strategy to prevent the degradation of dynamic performance due to reduced magnetizing current. To verify the proposed method, digital simulations and experiments are carried out for a squirrel-cage induction motor with the rating of 2.2[kW].

  • PDF

Characteristic Comparison Analysis for Standard and High-Efficiency Induction Motor (일반 및 고효율 유도 전동기의 특성 비교 해석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.186-190
    • /
    • 2007
  • This paper presents an analysis on the power characteristics of standard and high-efficiency induction motor. The parameter of induction motor play an important role in the expression of machine's performance characteristics. Induction motor can be differently found its characteristics parameters with the operation under the same capacity. So it is very difficult to detect correct parameter of induction motor. For the analysis, we discovered the motor parameters by the technical program with nameplate data. In this paper, we analyzed that how power and torque characteristics of induction motor would be changed for two kinds of motor parameters.

Vector Control of Induction Motors using Optimal Efficiency Control

  • Kim, Sang-uk;Chi, Jin-ho;Kim, Young-seok
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • This paper presents the control algorithm for maximum efficiency drives of an induction motor system with the high dynamic performance. This system uses a simple model of the induction motor that includes equations of the iron losses. The model, which only requires the parameters of the induction motor, is referred to a field-oriented frame. The minimum point of the input power can be obtained at the steady state condition. The proposed optimal efficiency control algorithm calculates the reference torque and flux currents for the vector control of the induction motors. A 32 bit floating point TMS320C32 DSP chip implements the drive system with the efficiency optimization controller. The results show the effectiveness of the control strategy Proposed for the induction motor drive.

SW-VVVF System for High Efficiency Drive of Induction Motor (삼상 유도전동기의 고효율 운전을 위한 SW-VVVF 시스템에 관한 연구)

  • 유철로;이공희;이성룡
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.93-99
    • /
    • 1989
  • This paper describes Sinusoidal Wave-Variable Voltage Variable Fequency (SW-VVVF) system for the high efficiency drive of a 3-phase induction motor. SW-VVVF system consists of a 3-phase 24-pulse converter and a SPWM inverter. The converter with additional 2 tap diode circuits in interphase reactor reduces harmonics in input current. The SPWM inverter consists of an improved PLL system and a V/F controller, which reduces harmonics in output current and performs a high efficiency algorithm by maintaining a constant slip frequency and compensating for the velocity variation of the induction motor with the change of load. Therefore, this system reduces harmonics in input and output currents, and also can drive an induction motor with high efficiency in an economical way. We have proved its utility through experiment.

  • PDF