• Title/Summary/Keyword: High-rise building

Search Result 1,745, Processing Time 0.03 seconds

Effects of Vertical Meteorological Changes on Heating and Cooling Loads of Super Tall Buildings

  • Song, Doosam;Kim, Yang Su
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.81-85
    • /
    • 2012
  • Vertical meteorological conditions encountered by super tall buildings, such as wind speed, temperature and humidity, vary due to their height. Therefore, it is necessary to consider these environmental changes to properly estimate the heating and cooling loads, and to minimize the energy demands for HVAC in super tall buildings. This paper aims to analyze how vertical meteorological changes affect heating and cooling loads of super tall buildings by using numerical simulation. A radiosonde, which observes atmospheric parameters of upper air such as wind speed, wind direction, temperature, relative humidity and pressure, was used to provide weather data for the building load simulation. A hypothetical super tall building was used for the simulation to provide quantified characteristics of the heating and cooling loads, comparing the lower, middle and upper parts of the building. The effect of weather data on the heating and cooling loads in super tall building was also discussed.

Sustainable Design and Its Cost: Case Study of Nanning China Resources Tower

  • Lai, Stephen Y.F.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.4
    • /
    • pp.323-326
    • /
    • 2017
  • Sustainability is becoming more and more important in our everyday lives. Thus, it is apparent that more sustainable initiatives are incorporated in a building design concept to reduce operation costs and environmental impacts. However, will the construction cost go up if the building is going green - especially if it is a tall building? This is the question on everyone's mind. In the following paragraphs, we will look into a case study of a skyscraper in Nanning, China. That 411-metre skyscraper, Nanning China Resources Centre East Office Tower, is currently under construction. Designed to LEED-CS Gold standards, the building has adopted a number of sustainable design elements and operation practice, which indeed only accounts for a small percentage of the total construction cost.

Optimum Layout Model of Lift Car for Improving Productivity in High-rise Building Exterior Finishing Work (마감공사 생산성 향상을 위한 리프트 카 최적배치 모델)

  • Lee, Dongmin;Lim, Hyunsu;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.171-172
    • /
    • 2013
  • An operation planning of lift car is crucial in tall building construction especially it's arrangement plans, because it is related with transportation distance of finishing materials affecting construction productivity. Since tall building construction, composed of complicating and huge plane have complex traffic lines of finishing materials, to determine the position of lift car empirically or intuitively has limits. Therefore this paper suggest an optimum layout model of lift car minimizing the transportation distance both at site-level and floor-level using Graph theory and Dijkstra algorithm.

  • PDF

Analysis of Interference Elements for the Integrated Equipment Operation in Tall Building Construction (초고층 골조공사의 통합 장비 운영을 위한 장비 간의 간섭요소 분석)

  • Lee, Dongyoon;Lim, Hyunsu;Kim, Baek-Joong;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.173-175
    • /
    • 2013
  • In tall building construction, the equipment operation plans have an effect on productivity. Equipment, used in tall building construction, has operating plans of each it and restrictively operate owing to the first placed equipment operation. Therefore the interference of equipment was occur frequently. As it, the productivity is less effective and the construction delay occurs. This research was analysis the interference elements between the equipment for constructing the efficient equipment associated operational processes. The interference elements between the equipment derive through expert advice and analysis using IPA. Through the IPA, this research deducted the interference elements located 'Concentrate Here' which is the highest importance and the lowest performance.

  • PDF

Toward Net-Zero Energy Retrofitting: Building-Integrated Photovoltaic Curtainwalls

  • Kim, Kyoung Hee;Im, Ok-Kyun
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • With the rapid urbanization and growing energy use intensity in the built environment, the glazed curtainwall has become ever more important in the architectural practice and environmental stewardship. Besides its energy efficiency roles, window has been an important transparent component for daylight penetration and a view-out for occupant satisfaction. In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV) curtainwall as a sustainable alternative to conventional window systems. Design variables such as building orientations, climate zones, energy attributes of BIPV curtainwalls, and glazed area were studied, to minimize energy consumption and discomfort hours for three cities representing hot (Miami, FL), mixed (Charlotte, NC), and cold (Minneapolis, MN). Parametric analysis and Pareto solutions are presented to provide a comprehensive explanation of the correlation between design variables and performance objectives for net-zero energy retrofitting applications.

Inclinometer-based method to monitor displacement of high-rise buildings

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2018
  • Horizontal displacement of high-rise building is an essential index for assessing the structural performance and safety. In this paper, a novel inclinometer-based method is proposed to address this issue and an algorithm based on three spline interpolation principle is presented to estimate the horizontal displacement of high-rise buildings. In this method, the whole structure is divided into different elements by different measured points. The story drift angle curve of each element is modeled as a three spline curve. The horizontal displacement can be estimated after integration of the story drift angle curve. A numerical example is designed to verify the proposed method and the result shows this method can effectively estimate the horizontal displacement with high accuracy. After that, this method is applied to a practical slender structure - Shanghai Tower. Nature frequencies identification and deformation monitoring are conducted from the signal of inclinometers. It is concluded that inclinometer-based technology can not only be used for spectrum analysis and modal identification, but also for monitoring deformation of the whole structure. This inclinometer-based technology provides a novel method for future structural health monitoring.

Effects of turbulence intensity and exterior geometry on across-wind aerodynamic damping of rectangular super-tall buildings

  • Quan, Y.;Cao, H.L.;Gu, M.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-209
    • /
    • 2016
  • Across-wind aerodynamic damping ratios are identified from the wind-induced acceleration responses of 15 aeroelastic models of rectangular super-high-rise buildings in various simulated wind conditions by using the random decrement technique. The influences of amplitude-dependent structural damping ratio and natural frequency on the estimation of the aerodynamic damping ratio are discussed and the identifying method for aerodynamic damping is improved at first. Based on these works, effects of turbulence intensity $I_u$, aspect ratio H/B, and side ratio B/D on the across-wind aerodynamic damping ratio are investigated. The results indicate that turbulence intensity and side ratio are the most important factors that affect across-wind aerodynamic damping ratio, whereas aspect ratio indirectly affects the aerodynamic damping ratio by changing the response amplitude. Furthermore, empirical aerodynamic damping functions are proposed to estimate aerodynamic damping ratios at low and high reduced speeds for rectangular super-high-rise buildings with an aspect ratio in the range of 5 to 10, a side ratio of 1/3 to 3, and turbulence intensity varying from 1.7% to 25%.

An Experimental Study on the Mechanical Properties of High Strength of High Strength Concrete Subject to High Temperature Heating (고온가열을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Tae-Gyu;Sin, Seung-Bong;Kim, Young-Sun;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.9-12
    • /
    • 2007
  • Recently, research and development related to high strength concrete for the high rise and large scale reinforced concrete building has been actively promoted in worldwide by national and private research project. But, it is reported that violent explosive explosion would be happened when it was exposed in fire. In the existed study, a explosion in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement paste and aggregate, and causes crack by thermal stress. In case of the Europe, Japan and America, they have studied the explosion for a long time. However it would hardly study the explosion in domestic, So it is needed base on mechanical properties of fire deterioration in high strength concrete. Therefore, this study is intend as an mechanical properties of specimen to high heating by heating and load test machine and $700^{\circ}C$. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

Space study on Lighting Performance For Residential Buildings By using Simulation Analysis (시뮬레이션 분석기법을 이용한 주거용 건물의 공간별 채광성능 연구)

  • Lim, Tae Sub;Lim, Jung Hee;Kim, Byung Seon
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.97-104
    • /
    • 2013
  • This proposed simulation-based design study is based on the design of residential high-rise buildings in South-Korea. the purpose of this study is to evaluate the amount of daylighting performance passing through building glazing according to sky conditions, orientation of windows and each space of Apartment buildings. The clear sky includes sunshine and is intense and brighter at the horizon than at the zenith, except in the area around the sun. Daylight received within a building is directly dependent upon the sun's position and the atmospheric conditions. Orientation of the building generally used to refer to solar orientation which is the siting of building with respect to solar access. Although any building will have different orientations for its different sides, the orientation can refer to a particular room, or to the most important facade of the building. north-facing windows receive twice the winter sun than east and west facing windows, allowing light and warmth into the home. They can be easily shaded from the high summer sun to help keep the house cool. Ideally, the glazing area should be between 10-25% of the floor area of the room. This paper was calculated by a Desktop Radiance program. The space dimensions were based on a unit module of real constructed apartment having divided into five sections such as living room, room1, room2, room3 and kitchen.

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.