• Title/Summary/Keyword: High-speed EMU

Search Result 87, Processing Time 0.029 seconds

Study on the Crashworthiness Analysis and Evaluation of the High-Speed EMU (동력분산형 고속전철의 충돌안전도 해석 및 평가기술 연구)

  • Koo, Jeong-Seo;Kim, Geo-Young;Cho, Hyun-Jik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1213-1220
    • /
    • 2008
  • In this study, the crashworthy design guidelines for the high speed EMU were derived and numerically evaluated. As for this high speed train, there are several different features from the KTX in that the conventional type bogies are adopted and the front end car (TC car) accommodates passengers. It is natural that the impact acceleration of the front end car should be controlled under the appropriate level stipulated at safety regulations for collision accidents. Also, car-to-car interfacing structures and devices should be deliberately designed to prevent overriding and telescoping mechanisms. As the first step for these design countermeasures, it was studied that how much impact energy should be absorbed at the energy absorbing zones and devices of each carbody to satisfy the impact acceleration regulations of the safety regulations. These results will be used as the crashworthy design guidelines for the high speed train in the next year research.

  • PDF

A Study on the Lateral Vibration Reduction of the High-speed Electric Multiple Unit (동력분산형 고속열차의 횡방향 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Park, Joon-Hyuk;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.797-803
    • /
    • 2019
  • This study was carried out to reduce the lateral vibration of high-speed electric multiple units. In the study, the high-speed electric multiple unit prototype (HEMU-430X) has a high lateral vibration at low equivalent conicity regardless of the wheel profiles (XP55, GV40, S1002). As wheel wear progresses and the equivalent conicity increases, the lateral vibration tends to decrease. The reason is that a combination of the suspension characteristics causes the body and bogie to resonate at a frequency of 1.4 Hz when the equivalent conicity is low, resulting in body hunting. An investigation of the lateral vibration of overseas high-speed trains showed that a decrease in the hydraulic stiffness of the yaw damper could improve the vibration. The series stiffness of the yaw damper is a combination of the hydraulic stiffness and elastic joint. In this study, an attempt was made to improve the lateral vibration by lowering the stiffness of the elastic joint. The series stiffness of the adjusted yaw damper was approximately 60% compared to the original one. The on track test results showed improvement in the lateral vibration for both running directions. The vibration reduction method of this study can be used for EMU-250 and EMU-320 in future commercial operations.

Development of FE Models of the Heavy Obstacle for the EU-TSI and Domestic Rolling Stock Safety Regulations and Application to Collision Evaluation of the Korean High-speed EMU (EU의 TSI 규정 및 국내 철도차량안전기준의 대형장애물 유한요소모델 개발과 분산형 고속열차의 충돌성능평가에 적용)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • The purpose of this paper is to develop two kinds of finite element models for the heavy deformable obstacle defined in grade crossing collision scenario of the Europe TSI and the Korean rolling stock safety regulations and to apply the crashworthiness evaluation for the Korean high-speed EMU with the FE model. The numerical models of the heavy obstacle were changed from a past rigid one to a current deformable one whose stiffness requirement should be verified by a collision simulation defined in the regulations. Through several trial simulations, two types of numerical models for the heavy obstacle were developed, which satisfied physical properties specifies in the regulations. One is a solid-type obstacle with uniform density and the other is a shell-type. With the obstacles developed in this study, the grade crossing collision scenario for Korean high-speed EMU was simulated and evaluated for the two-type obstacle models. From the simulation results, the shell and solid-type obstacles showed quite different behaviors after collision, and the shell type model gave more severe results.

Critical speed analysis of the High-Speed EMU (분산형 고속전철의 임계속도 해석)

  • Shin, Bum-Sik;Lee, Seung-Il;Lee, Sang-Won;Koo, Ja-Choon;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.973-978
    • /
    • 2008
  • This study concerned on the critical speed due to hunting and snake motion train to ensure the stability. First, the critical speed was calculated by using a numerical model, and calculated the critical speed of the vehicle through the simulation with the use of ADAMS/RAII. Also, the snake motion was confirmed through a modal analysis and running simulation. The calculated results, show that the rail irregularity becomes the influential factors of the stability since it is the direct source of excitation of the vehicle.

  • PDF

Study on the Noise Reduction Techniques of the High-Speed EMU (동력분산형 고속철도의 실내외 소음저감기술 연구)

  • Hong, Yun-H.;Kim, Jeung-T.;Kim, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1148-1153
    • /
    • 2008
  • Noise pollution from a high speed train has been a serious social issue nowadays. Especially when a train speed exceeds 350 km/hr, an aerodynamic noise level has been known to be increased drastically. In this paper, explained were the studies on the noise reduction and engineering approaches to estimate and analyze influences of noise. Based on this study, it is estimated to apply results to development of trains and expected to accomplish futuristic technology by devising noise prediction of high speed EMU and measures to reduce noise on a design phase.

  • PDF

A study on the Original form development of the Streamline nose and interior design of the High speed EMU (동력 분산형 고속전철의 전두부 형상 및 실내 공간디자인 원형모델 개발에 관한 연구)

  • Seok, Jae-Heuck;Hwang, In-Hee;Park, Kyong-Jin;Han, Jung-Wan
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.535-544
    • /
    • 2009
  • Korea holds the High-speed EMU technique and produced to the forth in the world. Also, Preparing an advance opportunity to the world market. especially, We must develop the Original form individually to have competitive power about industrialized country of a high-speed train. This research proposed a design development process which consider interior design to enhance a line of flow and efficiency from implementation of shape about the Streamline nose.

  • PDF

Study on the Aerodynamic Analysis of the High-Speed EMU (동력분산형 고속철도의 공력해석기술 연구)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Kwak, Min-Ho;Park, Hoon-Il;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1166-1171
    • /
    • 2008
  • Through Korean high speed train development project "G7 Leading Technology Development Project" from 1996 to 2002, HSR-350X has been developed. It can run the maximum operating speed of 350 km/h. Based on this technology, KTX-2 which will be served commercially has been developed till 2007. This paper introduces the aerodynamic analysis of the High-Speed EMU and shows the results of optimized aerodynamic nose shape design techniques and clean pantograph panhead original techniques study. These are the important parts of developments for high speed train which maximum speed is 400 km/h. Especially for decrease of tunnel micro pressure waves, the optimized nose area distributions were derived and the characteristics of micro pressure wave were analyzed. The robust optimized pantograph panhead shapes investigated to improve the performance and decrease the vortex flow which is thought to be its noise source. These shapes are clean and robust to external disturbances like unsteady accelerated flow or side wind was derived. Finally aerodynamic performances was verified with PIV and smog visualization by wind tunnel test.

  • PDF

Derivation of the Standard Design Guidelines for Crashworthiness of the High-Speed EMU (동력분산형 고속전철의 충돌안전도 설계 가이드라인 도출)

  • Kim, Geo-Young;Cho, Hyun-Jik;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.772-779
    • /
    • 2008
  • Through this study, standard design guidelines for the high speed EMU have been derived to meet the crashworthiness requirements of the Korean rollingstock safety regulation. The crashworthiness regulation requires some performance requirements for two heavy collision accident scenarios; a train-to-train collision at the relative speed of 36 kph, and a collision against a standard deformable obstacle of 15 ton at 110 kph. The complete train set will be composed of 2TC-6M with 13 ton axle load, different from KTX with the power car of 17 ton axle load. Using theoretical and numerical analyses, some crashworthy design guidelines were derived in terms of mean crush forces and energy absorptions for main crushable structures and devices. The derived design guidelines were evaluated and improved using one dimensional spring-mass dynamic simulations. It is shown from the simulation results that the suggested design guidelines can easily satisfy the domestic crashworthiness requirements.

  • PDF

Dynamic Analysis of Railway Vehicle Using Mathematical Modeling of High-Speed EMU (분산형 고속전철의 34자유도 동역학적 모델링을 통한 철도차량의 동적 특성 해석)

  • Lee, Rae-Min;Lee, Pil-Ho;Lee, Sang-Won;Koo, Ja-Choon;Choi, Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1426-1434
    • /
    • 2008
  • This paper addresses the numerical study on the dynamics of the High-speed EMU to enhance the ride quality. The 17 and 34 degrees-of-freedom (DOF) dynamic models for a single railway vehicle are proposed, and its vibrational characteristics according to the nonuniform rail profile are analyzed via Matlab. The validity of the proposed 34-DOF model are verified by comparing its dynamic characteristics and those from ADAMS/Rail. In addition, the critical dynamic parameters are identified by the parametric analysis, and rough design variables to reduce the vibration level of the railway vehicle are proposed. Finally, the frequency analysis - FFT - are conducted to extract the resonant frequencies, which have a significant influence on the determination of the critical speed of the railway vehicle. It is demonstrated that the results from the Matlab-based numerical analysis of the 34-DOF dynamic model are similar to those from ADAMS/Rail.

  • PDF