• Title/Summary/Keyword: High-speed EMU

Search Result 87, Processing Time 0.027 seconds

Analysis of the Cooling System for Traction Motors of the High-Speed EMU (동력분산형 고속 전철의 견인전동기 냉각 시스템 해석 및 설계기술 연구)

  • Seo, Jang-Ho;Lee, Sang-Yub;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1188-1194
    • /
    • 2008
  • To cope with the demagnetization risk of permanent magnets used in Interior Permanent Magnet Synchronous Motors(IPMSM), an accurate iron analysis and thermal analysis are very important. In this research, to calculate thermal increment of IPMSM for high-speed traction motor, we will extract losses of IPMSM considering the condition of field weakening control. Then we will input the calculated losses such as iron loss and copper loss as the thermal sources. Based on magnetic filed and thermal analysis, we will support the design of IPMSM for high-speed train.

  • PDF

A Study on the Window Glass Pressure for High-speed Train (고속철도차량의 유리창 압력에 관한 연구)

  • Kwon, Hyeok-Bin;Chang, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.371-375
    • /
    • 2010
  • In order to decide the strength requirement of the window glass for the high-speed train, the pressure change during the passage of the EMU type high-speed train has been numerically simulated. Based on the calculation results, the pressure difference between the inner and outer pressure of the cabin has been calculated to yield the amount of load acting on the window glass of the cabin. To simulate the pressure field generated by the high-speed train passing through the tunnel, computational fluid dynamics based on the axi-symmetric Navier-Stokes equation has been employed. The pressure change inside a train has been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train.

Design & system construction of insulation on the traction motor for EMU (철도차량용 견인전동기의 절연설계 및 절연시스템 구성)

  • 왕종배;홍선호;조연옥;김명룡
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.194-197
    • /
    • 2001
  • Traction motors driven by high speed switching inverters is demanded higher operating temperature, severe duty cycles, higher starting current, frequent voltage transients and finally severe environmental exposure. For applications to inverter duty, traction motors needs a special insulation system, which has characteristics of increased bond strength, lower operating temperature and higher turn-to-turn insulation. In this paper, design considerations and manufacturing procedure of 200 Class insulation system with polyimde(Kapton) main insulation and silicone resin VPI process on the traction motor for EMU will be reviewed. And performance test and long life evaluation test which prove stability and long life evaluation test which prove stability and reliability of insulation system for traction motor will be introduced.

  • PDF

Study on the frictional heat between wheel tread and brake shoe of EMU (도시철도 차량의 차륜답면-제륜자간 제동 마찰열에 관한 연구)

  • Yoon Cheon-Joo;Kim Seong-Keol;Goo Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.88-93
    • /
    • 2005
  • Frictional heat generates when the brake shoes are in contact with wheel tread under high pressure for EMU's speed control, stopping, and deceleration. Such a frictional heat has a significant effect on the wheel tread. In order to analyze the characteristics of frictional heat and measure the amount of the generated heat, tests by using a brake dynamometer and for running vehicles are carried out. In addition, finite element analysis is performed to simulate the temperature distribution and thermal analysis of the brake shoes. Through the tests and the simulations, it is found that the problems by temperature increase at tread braking are verified.

  • PDF

Steady-State Harmonic Domain Matrix-Based Modeling of Four-Quadrant EMU Line Converter

  • Wang, Hui;Wu, Mingli;Agelidis, Vassilios G.;Song, Kejian
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.572-579
    • /
    • 2014
  • As a non-linear time variant system, the four-quadrant line converter of an electric multiple unit (EMU) was expressed by linear time periodic functions near an operating point and modeled by a steady-state harmonic domain matrix. The components were then combined according to the circuit connection and relations of the feedback control loops to form a complete converter model. The proposed modeling method allows the study of the amplitude of harmonic impedances to explore harmonic coupling. Moreover, the proposed method helps provide a better design for the converter controllers, as well as solves the problem in coordination operation between the EMUs and the AC supply. On-site data from an actual $CRH_2$ high-speed train were used to validate the modeling principles presented in the paper.

Study on Flow Lubrication Selection of Driving Gear Unit for EMU (전동차용 DRIVING GEAR UNIT의 윤활유량 선정에 관한 연구)

  • Kim, Kyung-Han;Lee, Tae-Hun;Kim, Hak-Soo;Seo, Young-Jin;Ko, Hyung-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.132-137
    • /
    • 2011
  • Many studies are being conducted to improve high speed, light weight and safety of passenger. To improve safety of rolling stock, safety of running performance is most important, and optimizing flow lubrication in driving gear is essential. This study simulates lubricant flow change in driving gear casing which is splashed by the surface of low speed gear teeth following rotational direction of driving gear unit for EMU by using CFD analysis, and based on analysis detail, non-load actual test is conducted for similar driving condition to find out suitability of analysis, selection of lubricate and stability of driving gear.

  • PDF

A Study on the Reliability Prediction and Lifetime of the Electrolytic Condenser for EMU Inverter (전동차 인버터 구동용 전해콘덴서의 신뢰도예측과 수명 연구)

  • Han, Jae-Hyun;Bae, Chang-Han;Koo, Jeong-Seo
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Inverter module, which feeds the converted power to the traction motor for EMU. Consists of the power semiconductors with their gate drive unit(GDU)s and the control computer for driving, voltage, current and speed controls. Electrolytic condenser, connected to the gate drive unit and a core component to drive the power semiconductor, has problems such as reduction in lifetime and malfunction caused by electrical and mechanical characteristic changes from heat generation during high speed switching for generation of stable power. In this study, To check the service life of electrolytic condenser, the test was carried out in two ways. First, In the case of accelerated life testing of condenser, the Arrhenius model is a way of life testing. Another way is to analyze the reliability of the failure data by the method of parametric data analysis. Eventually, life time by accelerated life test than a method of failure data analysis(Weibull distribution) was found to be slightly larger output.

Study on the Application of IT and Smart Sensors to the High-Speed EMU (동력분산형 고속전철에 IT 및 스마트센서의 적용에 관한 연구)

  • Chang, Duk-Jin;Kang, Song-Hee;Song, Dahl-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1201-1208
    • /
    • 2008
  • Ubiquotuous technology should be adopted in railroad business to provide passenger's security and convenience. In this project, IT and smart sensor technologies are reviewed, benchmarked, designed, and implemented. The target system is the next generation high speed train to be developed and operated in Korea with the maximum speed of 400km/h. Wireless sensor network with smart sensors is implemented around a train car. PC-like IT terminal will be designed and implemented so an individual passenger can use it to do information retrieval through the Internet, personal data processing, the e-learning, shopping on the railroad, and so on. These provision will give comfort, convenience, and safety of a passenger during his/her trip.

  • PDF

Development of Tilting Algorithm of Vehicle System (차량시스템의 틸팅 알고리즘개발)

  • Song Youngsoo;Kim Nam-Po;Ko Taehwan;Hna Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.611-616
    • /
    • 2003
  • The application of the tilting train is one of the most efficient ways to increase curving speed of train on existing tracks or on mountain railway lines with sharp curves. It can increase the running speed and ensure the passenger comfort and safety at the same time. Therefore, the development of tilting train has been paid high attention by many countries in the world. Tilting trains have been operated successfully in many countries such as Italy, Spain, Germany, Sweden, England and so on. The tilting trains possess broad prospects in raising speeds. The distributed EMU tilting train set will be developed according to the Korea railway conditions and will be operated on the Honam line, Janghang line and Jungang line. Because there is high percentage of curves on these lines. these lines are suited to operating tilting trains to raising speed and saving passenger traveling time. In order. to improve the curving performance of the tilling train. the active-control algorithm is utilized for the tilting bogie.

  • PDF

Study on the Aerodynamic Advancements of the Nose and Pantograph of a High-Speed Train (고속열차 전두부 및 팬터그래프 공력성능 향상기술 연구)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Kwak, Min-Ho;Park, Hoon-Il;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.416-421
    • /
    • 2008
  • Recent high-speed trains around the world have achieved remarkable improvement in speed. In Korea, the new high-speed train with maximum speed of 400km/h has been developing through the 'Future High-Speed Rail System Project'. The improvement in train speed brings numerous aerodynamic problems such as strong aerodynamic resistance, noise, drastic pressure variation due to the crosswind or passing by, micro-pressure wave at tunnel exit, and so on. Especially, the nose shape of high-speed train is closely related to the most of the aerodynamic problems. Also the pantograph has to be considered for noise prevention and detachment problems. In this paper, the project, 'Research on the Aerodynamic Technology Advancement of the High-Speed EMU' is introduced briefly, which is one of the efforts for the speed improvement of the 'HEMU400x'. Finally, two main results of train nose and pantograph will be shown. First, the optimization of the cross-sectional area distribution of the high-speed train nose to reduce tunnel micro-pressure wave, and second, robust design optimization of the panhead shape of a pantograph.

  • PDF