• Title/Summary/Keyword: High-speed micro-EDM

Search Result 9, Processing Time 0.028 seconds

Characteristics of RC circuit with Transistor in Micro-EDM (트랜지스터 부착 RC 방전회로의 마이크로 방전가공 특성)

  • 조필주;이상민;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • In micro-EBM, it is well blown that RC circuit is suitable for discharge circuit because of its low pulse width and relatively high peak current. To increase machining speed without changing unit discharge energy, charge resistance should be decreased. But, if very low, continuous (or normal) arc discharge occurs, then increases electrode wear and reduces machining speed remarkably. In this paper, RC circuit with transistor is used to micro-EDM. Experimental results show that RC circuit with transistor can cut off continuous (or normal) arc discharge effectively if duty factor and switching period of transistor are set up optimally. Through experiments with varying charge resistance, it can be known that RC circuit with transistor has about two times faster machining speed than that of RC circuit. Especially, it has prominent rise-effect of machining speed in low unit discharge energy, so that a high-quality and high-speed micro-EDM can be realized through RC circuit with transistor.

  • PDF

Characteristics of RC Circuit with Transistors in Micro-EDM (트랜지스터 부착 RC 방전회로의 마이크로 방전가공 특성)

  • Cho Pil Joo;Yi Sang Min;Choi Deok Ki;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.44-51
    • /
    • 2004
  • In a micro-EDM, it is well known that an RC circuit is suitable as a discharge circuit because of its low pulse width and relatively high peak current. To increase machining speed without changing unit discharge energy, charge resistance should be decreased. But, when the resistance is very low, continuous (or normal) arc discharge occurs, electrode wear increases and machining speed is reduced remarkably. In this paper, an RC circuit with transistors is used in a micro-EDM. Experimental results show that the RC circuit with transistors can cut off a continuous (o. normal) arc discharge effectively if the duty factor and switching period of the transistor are set up optimally. Through experiments with varying charge resistances, it is shown that the RC circuit with transistors has about two times faster machining speed than that of an RC circuit.

Wire-tension Control System using Photo-interrupter Sensor and Micro-electrode Fabrication (광단속센서를 이용한 와이어장력 제어장치 및 마이크로전극 제조)

  • Kang, Myung Chang;Lee, Chang Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.28-35
    • /
    • 2013
  • Micro electrical discharge machining (EDM) as a non-contact machining process is very effective for micromachining with a thin electrode because of its low machining reaction force. The micro-electrode machining device has the advantage of maintaining high precision through the whole processes and uses a feeding wire in the thin electrode tool manufacturing process. This study describes the design and evaluation of a micro-electrode machining device using optical photo-interrupter. The electrode was fabricated by reverse electrical discharge machining. The performance of designed system was evaluated to measure tension force according to feed speed of wire. This system for micro electrode fabrication proves the feasibility in the micro-EDM process of the micro holes and parts for industrial applications.

The development and test of the electro-discharge machine for micro-drilling (미세구멍 가공용 방전 가공기의 개발 및 시험)

  • Baek, Hyeong-Chang;Kim, Byeong-Hee;Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.1-7
    • /
    • 1999
  • This is the pre-study to pile up the basic technique for the electro-discharge machining in the field of micro-drilling. The machined chips are flowed out from the machining area by the flow arisen from the high speed rotation of the electrode. The cylindrical shape electrode, whose diameter is 0.5mm, is clamped by the three point clamping type clamper and the clamper is attached at the front shaft of the high speed rotating DC motor. The current for machining is controlled by pulse width modulation technique and the machining conditions such as frequency and duty ratio are changed to find out the effect of the variables for machined results.

  • PDF

Real-time Gap Control for Micro-EDM: Application in a Microfactory

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.3-6
    • /
    • 2008
  • Electrical discharge machining (EDM) is one of the most widespread nonconventional machining processes. Recently, a low-power micro-EDM process was introduced using a cylindrical electrode. Since its development, micro-EDM has been applied effectively to micromachining, and because the device setup for this process is simple, it is suitable for a microfactory that minimizes machines to fabricate small products economically in one system. In the EDM process, however, the electrode is also removed along with the workpiece. Therefore, the electrode shape and length vary as machining progresses. In this paper, a control method using a high speed realtime voltage measurement is proposed to regulate the rate and amount of material removed. The proposed method is based on the assumption that the volume of the workpiece removed in a single discharge pulses is nearly constant. The discharge pulses are monitored and controlled to regulate the amount of material removed. For this purpose, we developed an algorithm and apparatus for counting the number of discharge pulses. Electrode wear compensation using pulse number information was applied to EDM milling in a microfactory, in which a slight tilt of the workpiece may occur. The proposed control method improves the machining quality and efficiency by eliminating the inaccuracies caused by electrode wear and workpiece tilt.

Surface Characteristics of Tool Steel Machined Using Micro-EDM

  • Anwar, Mohammed Muntakim;San, Wong Yoke;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.74-78
    • /
    • 2008
  • High-speed tool steels are extensively used in tooling industries for manufacturing cutting tools, forming tools, and rolls. Electrical discharge machining (EDM) has been found to be an effective process for machining these extremely hard and difficult-to-cut materials. Extensive research has been conducted to identify the optimum machining parameters for EDM with different tool steels. This paper presents a fundamental study of the surface characteristics of SKH-51 tool steel machined by micro-EDM, with particular focus on obtaining a better surface finish. An RC pulse generator was used to obtain a better surface finish as it produces fine discharge craters. The main operating parameters studied were the gap voltage and the capacitance while the resistance and other gap control parameters were kept constant. A negative tungsten electrode was used in this study. The micro-EDM performance was analyzed by atomic force microscopy to determine the average surface roughness and the distance between the highest peak and lowest valley. The topography of the machined surface was observed using a scanning electron microscope and a digital optical microscope.

Gap Control Using Discharge Pulse Counting in Micro-EDM (미세 방전 가공에서의 방전 펄스 카운팅을 이용한 간극 제어)

  • Jung J.W.;Ko S.H.;Jeong Y.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.499-500
    • /
    • 2006
  • The electrode wear in micro-EDM significantly deteriorates the machining accuracy. In this regard, electrode wear needs to be compensated in-process to improve the product quality. Therefore, there are substantial amount of research about electrode wear. In this study a control method for micro-EDM using discharge pulse counting is proposed. The method is based on the assumption that the removed workpiece volume is proportional to the number of discharge pulses, which is verified from experimental results analyzing geometrically machined volume according to various number of discharges. Especially, the method has an advantage that electrode wear does not need to be concerned. The proposed method is implemented to an actual micro-EDM system using high speed data acquisition board, simple counting algorithm with 3 axis motion system. As a result, it is demonstrated that the volume of hole machined by EDM drilling can be accurately estimated using the number of discharge pulses. In EDM milling process a micro groove without depth variation caused by electrode wear could be machined using the developed control method. Consequently, it is shown that machining accuracy in drilling and milling processes can be improved by using process control based on the number of discharge pulses.

  • PDF

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF