• Title/Summary/Keyword: Higher order singularity

Search Result 6, Processing Time 0.018 seconds

p-Adaptive Finite Element Analysis of Stress Singularity Problems by Ordinary Kriging Interpolation (정규 크리깅보간법을 이용한 응력특이문제의 p-적응적 유한요소해석)

  • Woo Kwang-Sung;Park Mi-Young;Park Jin-Hwan;Han Sang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.849-856
    • /
    • 2006
  • This paper is to examine the applicability of ordinary Kriging interpolation(OK) to the p-adaptivity of the finite element analysis that is based on variogram. In the p-refinement, the analytical domain has to be refined automatically to obtain an acceptable level of accuracy by increasing the p-level non-uniformly or selectively. In case of non-uniform p-distribution, the continuity between elements with different polynomial orders is achieved by assigning zero higher-order derivatives associated with the edge in common with the lower-order derivatives. It is demonstrated that the validity of the proposed approach by analyzing results for stress singularity problem.

  • PDF

HIGHER ORDER SINGULARITIES AND THEIR ENERGETICS IN ELASTIC-PLASTIC FRACTURE (탄소성 균열 문제에서 고차응력특이성과 에너지론)

  • Jun, In-Su;Lee, Yong-Woo;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.384-388
    • /
    • 2001
  • The higher order singularities[1] are systematically examined, and discussed are their complementarity relation with the nonsingular eigenfunctions and their relations to the configurational forces like J-integral and M-integral. By use of the so-called two state conservation laws(Im and Kim[2]) or interaction energy, originally proposed by Eshelby[3] and later treated by Chen and Shield[4], the intensities of the higher order singularities are calculated, and their roles in elasticplastic fracture are investigated. Numerical examples are presented for illustration.

  • PDF

Calculation of Wave Resistance for a Submerged Body by a Higher Order Panel Method (고차 판요소법을 이용한 몰수체의 조파저항 계산)

  • Chang-Gu Kang;Se-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper, wave resistance for a submerged body is calculated by a higher order panel method. The Neumann-Kelvin problem is solved by the source or normal dipole distribution method. The body surface is represented by a bicubic B-spline and the singularity strengths are approximated by a bilinear form. The results calculated by the higher order panel method are compared with those by the lowest order panel method developed by Hess & Smith. The convergence rate of the higher order panel method is much better than the lowest order panel method. But the wave resistance calculated by the higher order panel method still shows discrepancy with an analytic solution at low Froude number like that by the lowest order panel method.

  • PDF

New analytical solutions to water wave diffraction by vertical truncated cylinders

  • Li, Ai-jun;Liu, Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.952-969
    • /
    • 2019
  • This study develops new analytical solutions to water wave diffraction by vertical truncated cylinders in the context of linear potential theory. Three typical truncated surface-piercing cylinders, a submerged bottom-standing cylinder and a submerged floating cylinder are examined. The analytical solutions utilize the multi-term Galerkin method, which is able to model the cube-root singularity of fluid velocity near the edges of the truncated cylinders by expanding the fluid velocity into a set of basis function involving the Gegenbauer polynomials. The convergence of the present analytical solution is rapid, and a few truncated numbers in the series of the basis function can yield results of six-figure accuracy for wave forces and moments. The present solutions are in good agreement with those by a higher-order BEM (boundary element method) model. Comparisons between present results and experimental results in literature and results by Froude-Krylov theory are conducted. The variation of wave forces and moments with different parameters are presented. This study not only gives a new analytical approach to wave diffraction by truncated cylinders but also provides a reliable benchmark for numerical investigations of wave diffraction by structures.

AN UNFOLDING OF DEGENERATE EQUILIBRIA WITH LINEAR PART $\chi$'v= y, y' = 0

  • Han, Gil-Jun
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • In this paper, we study the dynamics of a two-parameter unfolding system $\chi$' = y, y' = $\beta$y+$\alpha$f($\chi\alpha\pm\chiy$+yg($\chi$), where f($\chi$,$\alpha$) is a second order polynomial in $\chi$ and g($\chi$) is strictly nonlinear in $\chi$. We show that the higher order term yg($\chi$) in the system does not change qulitative structure of the Hopf bifurcations near the fixed points for small $\alpha$ and $\beta$ if the nontrivial fixed point approaches to the origin as $\alpha$ approaches zero.

  • PDF

Electric Discharge Analysis Using Nonlinarly-Coupled Equation of Electromagnetic Field and Charge Transport (방전현상 해석을 위한 전자장 및 전하이동 방정식의 비선형 결합 알고리즘)

  • Lee, Se-Yeon;Park, Il-Han;Lee, Se-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1494-1495
    • /
    • 2006
  • A complete finite element analysis method for discharge onset process, which is governed and coupled by charge transport equation and electric field equation, was presented. The charge transport equation of first order was transformed into a second-order one by utilizing the artificial diffusion scheme. The two second-order equations were analyzed by the finite element formulation which is well-developed for second-order ones. The Fowler-Nordheim injection boundary condition was adopted for charge transport equation. After verifying the numerical results by comparing to the analytic solutions using parallel plane electrodes with one carrier system, we extended the result to blade-plane electrodes in 2D xy geometry with three carriers system. Radius of the sharp tip was taken to be 50 ${\mu}m$. When this sharp geometry was solved by utilizing the space discretizing methods, the very sharp tip was found to cause a singularity in electric field and space charge distribution around the tip. To avoid these numerical difficulties in the FEM, finer meshes, a higher order shape function, and artificial diffusion scheme were employed.

  • PDF