• Title/Summary/Keyword: Hilbert-Huang spectrum

Search Result 11, Processing Time 0.033 seconds

Wear Detection in Gear System Using Hilbert-Huang Transform

  • Li, Hui;Zhang, Yuping;Zheng, Haiqi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1781-1789
    • /
    • 2006
  • Fourier methods are not generally an appropriate approach in the investigation of faults signals with transient components. This work presents the application of a new signal processing technique, the Hilbert-Huang transform and its marginal spectrum, in analysis of vibration signals and faults diagnosis of gear. The Empirical mode decomposition (EMD), Hilbert-Huang transform (HHT) and marginal spectrum are introduced. Firstly, the vibration signals are separated into several intrinsic mode functions (IMFs) using EMD. Then the marginal spectrum of each IMF can be obtained. According to the marginal spectrum, the wear fault of the gear can be detected and faults patterns can be identified. The results show that the proposed method may provide not only an increase in the spectral resolution but also reliability for the faults diagnosis of the gear.

A Hilbert-Huang Transform Approach Combined with PCA for Predicting a Time Series

  • Park, Min-Jeong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.995-1006
    • /
    • 2011
  • A time series can be decomposed into simple components with a multiscale method. Empirical mode decomposition(EMD) is a recently invented multiscale method in Huang et al. (1998). It is natural to apply a classical prediction method such a vector autoregressive(AR) model to the obtained simple components instead of the original time series; in addition, a prediction procedure combining a classical prediction model to EMD and Hilbert spectrum is proposed in Kim et al. (2008). In this paper, we suggest to adopt principal component analysis(PCA) to the prediction procedure that enables the efficient selection of input variables among obtained components by EMD. We discuss the utility of adopting PCA in the prediction procedure based on EMD and Hilbert spectrum and analyze the daily worm account data by the proposed PCA adopted prediction method.

Seismic damage potential described by intensity parameters based on Hilbert-Huang Transform analysis and fundamental frequency of structures

  • Tyrtaiou, Magdalini;Elenas, Anaxagoras
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.507-517
    • /
    • 2020
  • This study aims to present new frequency-related seismic intensity parameters (SIPs) based on the Hilbert-Huang Transform (HHT) analysis. The proposed procedure is utilized for the processing of several seismic accelerograms. Thus, the entire evaluated Hilbert Spectrum (HS) of each considered seismic velocity time-history is investigated first, and then, a delimited area of the same HS around a specific frequency is explored, for the proposition of new SIPs. A first application of the suggested new parameters is to reveal the interrelation between them and the structural damage of a reinforced concrete frame structure. The index of Park and Ang describes the structural damage. The fundamental frequency of the structure is considered as the mentioned specific frequency. Two statistical methods, namely correlation analysis and multiple linear regression analysis, are used to identify the relationship between the considered SIPs and the corresponding structural damage. The results confirm that the new proposed HHT-based parameters are effective descriptors of the seismic damage potential and helpful tools for forecasting the seismic damages on buildings.

Novel Hilbert spectrum-based seismic intensity parameters interrelated with structural damage

  • Tyrtaiou, Magdalini;Elenas, Anaxagoras
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.197-208
    • /
    • 2019
  • The objective of this study is to propose new seismic intensity parameters based on the Hilbert spectrum and to associate them with the seismic damage potential. In recent years the assessment of even more seismic features derived from the seismic acceleration time-histories was associated with the structural damage. For a better insight into the complex seismic acceleration time-history, Hilbert-Huang Transform (HHT) analysis is utilized for its processing, and the Hilbert spectrum is obtained. New proposed seismic intensity parameters based on the Hilbert spectrum are derived. The aim is to achieve a significant estimation of the seismic damage potential on structures from the proposed new intensity parameters confirmed by statistical methods. Park-Ang overall structural damage index is used to describe the postseismic damage status of structures. Thus, a set of recorded seismic accelerograms from all over the word is applied on a reinforced concrete frame structure, and the Park-Ang indices through nonlinear dynamic analysis are provided and considered subsequently as reference numerical values. Conventional seismic parameters, with well-known seismic structural damage interrelation, are evaluated for the same set of excitations. Statistical procedures, namely correlation study and multilinear regression analysis, are applied on the set of the conventional parameters and the set of proposed new parameters separately, to confirm their interrelation with the seismic structural damage. The regression models are used for the evaluation of the structural damage indices for every set of parameters, respectively. The predicted numerical values of the structural damage indices evaluated from the two sets of seismic intensity parameters are inter-compared with the reference values. The numerical results confirm the ability of the proposed Hilbert spectrum based new seismic intensity parameters to approximate the postseismic structural damage with a smaller Standard Error of Estimation than this accomplished of the conventional ones.

Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum

  • Leaman, Felix;Herz, Aljoscha;Brinnel, Victoria;Baltes, Ralph;Clausen, Elisabeth
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2020
  • One of the most important aspects in structural health monitoring is the detection of fatigue damage. Structural components such as heavy-duty bolts work under high dynamic loads, and thus are prone to accumulate fatigue damage and cracks may originate. Those heavy-duty bolts are used, for example, in wind power generation and mining equipment. Therefore, the investigation of new and more effective monitoring technologies attracts a great interest. In this study the acoustic emission (AE) technology was employed to detect incipient damage during fatigue testing of a M36 bolt. Initial results showed that the AE signals have a high level of background noise due to how the load is applied by the fatigue testing machine. Thus, an advanced signal processing method in the time-frequency domain, the Hilbert-Huang Spectrum (HHS), was applied to reveal AE components buried in background noise in form of high-frequency peaks that can be associated with damage progression. Accordingly, the main contribution of the present study is providing insights regarding the detection of incipient damage during fatigue testing using AE signals and providing recommendations for further research.

An Application of Hilbert-Huang Transform on the Non-Stationary Astronomical Time Series: The Superorbital Modulation of SMC X-1

  • Hu, Chin-Ping;Chou, Yi;Wu, Ming-Chya;Yang, Ting-Chang;Su, Yi-Hao
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.79-82
    • /
    • 2013
  • We present the Hilbert-Huang transform (HHT) analysis on the quasi-periodic modulation of SMC X-1. SMC X-1, consisting of a neutron star and a massive companion, exhibits superorbital modulation with a period varying between ~40 d and ~65 d. We applied the HHT on the light curve observed by the All-Sky Monitor onboard Rossi X-ray Timing Explorer (RXTE) to obtain the instantaneous frequency of the superorbital modulation of SMC X-1. The resultant Hilbert spectrum is consistent with the dynamic power spectrum while it shows more detailed information in both the time and frequency domains. According to the instantaneous frequency, we found a correlation between the superorbital period and the modulation amplitude. Combining the spectral observation made by the Proportional Counter Array onboard RXTE and the superorbital phase derived in the HHT, we performed a superorbital phase-resolved spectral analysis of SMC X-1. An analysis of the spectral parameters versus the orbital phase for different superorbital states revealed that the diversity of $n_H$ has an orbital dependence. Furthermore, we obtained the variation in the eclipse profiles by folding the All Sky Monitor light curve with orbital period for different superorbital states. A dip feature, similar to the pre-eclipse dip of Her X-1, can be observed only in the superorbital ascending and descending states, while the width is anti-correlated with the X-ray flux.

APPLICATIONS OF THE HILBERT-HUANG TRANSFORM ON THE NON-STATIONARY ASTRONOMICAL TIME SERIES

  • HU, CHIN-PING;CHOU, YI;YANG, TING-CHANG;SU, YI-HAO;HSIEH, HUNG-EN;LIN, CHING-PING;CHUANG, PO-SHENG;LIAO, NAI-HUI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.605-607
    • /
    • 2015
  • The development of time-frequency analysis techniques allow astronomers to successfully deal with the non-stationary time series that originate from unstable physical mechanisms. We applied a recently developed time-frequency analysis method, the Hilbert-Huang transform (HHT), to two non-stationary phenomena: the superorbital modulation in the high-mass X-ray binary SMC X-1 and the quasi-periodic oscillation (QPO) of the AGN RE J1034+396. From the analysis of SMC X-1, we obtained a Hilbert spectrum that shows more detailed information in both the time and frequency domains. Then, a phase-resolved analysis of both the spectra and the orbital profiles was presented. From the spectral analysis, we noticed that the iron line production is dominated by different regions of this binary system in different superorbital phases. Furthermore, a pre-eclipse dip lying at orbital phase ~0:6-0:85 was discovered during the superorbital transition state. We further applied the HHT to analyze the QPO of RE J1034+396. From the Hilbert spectrum and the O-C analysis results, we suggest that it is better to divide the evolution of the QPO into three epochs according to their different periodicities. The correlations between the QPO periods and corresponding fluxes were also different in these three epochs. The change in periodicity and the relationships could be interpreted as the change in oscillation mode based on the diskoseismology model.

A Frequency Domain Analysis of Corneal Deformation by Air Puff (Air puff에 의한 각막 변형의 주파수 영역 분석)

  • Hwang, Ho-Sik;Lee, Byeong Ha;Lee, Chang Su
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.240-247
    • /
    • 2014
  • Intraocular pressure is measured after a cornea air puff by observing biomechanical properties such as thickness or displacement of the cornea. In this paper, we deal with a frequency domain analysis of corneal deformation in the air puff tonometry that is used to diagnose glaucoma or lasik. We distinguish the patient from the normal by measuring the oscillation frequency in the neighborhood of the central cornea section. A binary image was obtained from the video images, and cornea vertical oscillation profile was extracted from the difference between the vertical displacement data and the curve fitting. In terms of Fourier transform, a vibration frequency of 479.2Hz for the patient was obtained as well as more higher 702.8Hz for the normal due to stiffness. Hilbert-Huang transform's empirical mode decomposition generally describes local, nonlinear, and nonstationary data. After the data were decomposed into intrinsic mode functions, a spectrum and power were analysed. Finally, we confirm that the patient has 6 times more higher power ratio for the specific intrinsic mode function between the patient and the normal.

Blasting wave pattern recognition based on Hilbert-Huang transform

  • Li, Xuelong;Wang, Enyuan;Li, Zhonghui;Bie, Xiaofei;Chen, Liang;Feng, Junjun;Li, Nan
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.607-624
    • /
    • 2016
  • Rockburst is becoming more serious in Chinese coal mine. One of the effective methods to control rockburst is blasting. In the paper, we monitored and analyzed the blasting waves at different blast center distances by the Hilbert-Huang transform (HHT) in a coal mine. Results show that with the increase of blast center distance, the main frequency and amplitude of blasting waves show the decreasing trend. The attenuation of blasting waves is slower in the near blast field (10-75 m), compared with the far blast field (75-230 m). Besides, the frequency superposition phenomenon aggravates in the far field. A majority of the blasting waves energy at different blast center distances is concentrated around the IMF components 1-3. The instantaneous energy peak shows attenuation trend with the blast center distance increase, there are two obvious energy peaks in the near blast field (10-75 m), the energy spectrum appears "fat", and the total energy is greater. By contrast, there is only an energy peak in the far blast field, the energy spectrum is "thin", and the total energy is lesser. The HHT three dimensional spectrum shows that the wave energy accumulates in the time and frequency with the increasing of blast center distance.

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.