• Title/Summary/Keyword: Hollow fiber membrane

Search Result 425, Processing Time 0.031 seconds

A Study on Flow Rate Properties and Optimal Selection of Nitrogen Membrane Module of Hollow Fiber Type (중공사형 질소 분리막 모듈의 최적 선정과 유량특성에 관한 연구)

  • Kim, Jong-Do;Lee, Sangu-Su;Kim, Jeon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.915-922
    • /
    • 2008
  • The gas separation technology using membrane is widely used to refine various gases in many industry fields and recently is being applying in $CO_2$ recovery technology. In the gas and chemical tanker. nitrogen generators for inerting, purging and padding are on board and most of them have membrane modules of hollow fiber type with long life and vibration resisting properties. Because a membrane module is a key component accounting for 50% of total manufacturing cost of nitrogen generator, adequate selection for it is an important problem. In this paper, the flow performance coefficient based on dimension and specification data of membrane module was relatively selected to compare nitrogen generating capacity of module and various performance tests about the selected PARKER ST6010 membrane module were conducted. As a result, the useful coefficient and basic data in selecting a membrane module were achieved.

Development of Membrane Humidifier for FCEV (연료전지 자동차용 막 가습기 개발)

  • Kim, Kyoung-Ju;Lee, Moo-Seok;Yun, Joon-Khee;Shin, Yong-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.177-179
    • /
    • 2007
  • An object of the present study is to provide a hollow fiber membrane humidifier capable of improving the humidification efficiency while lowering the pressure loss, and is suitably usable for PEMFC(Polymer Electrolyte Membrane Fuel Cell). The performance of PEMFC is decisively dependent on the humidity of the electrolyte membrane(fluorinated membrane) and a humidifier plays an important role in moisturizing electrolyte membrane. Especially, this humidifier is a passive type(power-free) item and is volumetrically optimized. In this research, we propose the substitutes for the expensive fluorinated humidifier materials and the optimum dry-jet wet spinning conditions of hollow fiber membrane. In addition to that, This study will present an performance of an humidifier and compare computational results with the experimental data.

  • PDF

Hydrophobic modification of PVDF hollow fiber membranes using polydimethylsiloxane for VMD process

  • Cui, Zhaoliang;Tong, Daqing;Li, Xue;Wang, Xiaozu;Wang, Zhaohui
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.251-257
    • /
    • 2019
  • Fabricating hydrophobic porous membrane is important for exploring the applications of membrane distillation (MD). In the present paper, poly(vinylidene fluoride) (PVDF) hollow fiber membrane was modified by coating polydimethylsiloxane (PDMS) on its surface. The effects of PDMS concentration, cross-linking temperature and cross-linking time on the performance of the composite membranes in a vacuum membrane distillation (VMD) process were investigated. It was found that the hydrophobicity and the VMD performance of the PVDF hollow fiber membrane were obviously improved by coating PDMS. The optimal PDMS concentration, cross-linking temperature and cross-linking time were 0.5 wt%, $80^{\circ}C$, and 9 hr, respectively.

Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor

  • Ho, Chii-Dong;Sung, Yun-Jen;Chen, Wei-Ting;Tsai, Feng-Chi
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.35-50
    • /
    • 2017
  • The theoretical membrane gas absorption module treatments in a hollow fiber gas-liquid membrane contactor using Happel's free surface model were obtained under countercurrent-flow operations. The analytical solutions were obtained using the separated variable method with an orthogonal expansion technique extended in power series. The $CO_2$ concentration in the liquid absorbent, total absorption rate and absorption efficiency were calculated theoretically and experimentally with the liquid absorbent flow rate, gas feed flow rate and initial $CO_2$ concentration in the gas feed as parameters. The improvements in device performance under countercurrent-flow operations to increase the absorption efficiency in a carbon dioxide and nitrogen gas feed mixture using a pure water liquid absorbent were achieved and compared with those in the concurrent-flow operation. Both good qualitative and quantitative agreements were achieved between the experimental results and theoretical predictions for countercurrent flow in a hollow fiber gas-liquid membrane contactor with accuracy of $6.62{\times}10^{-2}{\leq}E{\leq}8.98{\times}10^{-2}$.

An Experimental Study on the Characteristic of Thermal Performance according to Feed Water Conditions to of Vacuum Membrane Distillation Module using PVDF Hollow Fiber (PVDF 중공사막을 이용한 진공 막 증류 모듈의 공급수 조건에 따른 열성능 특성에 관한 실험적 연구)

  • Joo, Hongjin;Kwak, Heeyoul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • In this study, thermal performance test of VMD module was performed, prior to the construction of the demonstration plant using the vacuum membrane distillation (VMD) module of the capacity of $400m^3/day$ and to the commercialization of the VMD module. For the thermal performance test, the experimental equipment of capacity of $2m^3/day$ was constructed. The permeate flux test and thermal performance test according to feed water conditions such as temperature and flow rate were conducted. The VMD module used in the study was manufactured by ECONITY Co., LTD with PVDF hollow fiber membrane. As a result, the Performance Ratio (PR) of the VMD module showed the maximum value of 0.904 under the condition of feed water temperature of $75^{\circ}C$ and flow rate of $8m^3/h$. PR value of the VMD module using PVDF hollow fiber membrane showed linearly increasing relationship with feed water temperature and flow rate. Also, The permeate flux of the VMD module was analyzed to have maximum value of 18.25 LMH and the salt rejection was 99.99%.

Preparation of PVDF Hollow Fiber Membrane and Absorption of SO2 from Flue Gas Using Bench Scale Gas-Liquid Contactor (PVDF 중공사막 제조 및 벤치규모 기-액 접촉기를 이용한 SO2 흡수특성)

  • Park, Hyun-Hee;Jo, Hang-Dae;Kim, In-Won;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.521-528
    • /
    • 2008
  • The micro-porous asymmetric PVDF hollow fiber membranes for gas-liquid contactor were prepared by the dry-jet wet phase inversion process and the characteristics of hollow fiber membranes were evaluated by the gas permeation method and scanning electron microscope. The chemical absorbent for removal of $SO_2$ gas was sodium hydroxide at bench scale hollow fiber membrane contactor. The experiments were performed in a counter-current mode of operation with gas in the shell side and liquid in the fiber lumen of the module to examine the effect of various operating variables such as concentration of absorbent, gas flow rate, L/G ratio and concentration of inlet $SO_2$ gas on the $SO_2$ removal efficiency using PVDF hollow fiber membrane contactor. Membrane mass transfer coefficient($k_m$) was calculated by mathematical modeling. The volumetric overall mass transfer coefficient increased with increasing the concentration of absorbent and L/G ratio. The increase of the absorbent concentration and L/G ratio not only provides more sufficient alkalinity but also decreases liquid phase resistance. The volumetric overall mass transfer coefficient increased with increasing gas flow rate due to decreasing the gas phase resistance.

HOLLOW FIBER MEMBRANG을 이용한 역세형 M/F SYSTEM

  • 김건태;최광호;김재협;최기석
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.74-75
    • /
    • 1994
  • 부유물질을 함유한 용수$\cdot$폐수의 정밀여과시 FOULING 때문에 세정약품이 많이 들고 MEMRANE 수명이 단축되는 문제점을 해결하기 위해 HOLLOW FIBER TYPE MEMBRANE을 이용한 역세형정밀 여과시스템을 개발하여 TEST를 실시하고 역세조건에 따른 FLUX, 제거율 및 역세효율을 조사하였다.

  • PDF

The flow of $CO_{2}$ and $N_{2}$ gases through Asymmetric polytherimide Membrane

  • Park, You-In;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.73-85
    • /
    • 1995
  • The asymmetric hollow fiber membranes were prepared by the wet spining of polyetherimide dope solution and the effect of hollow fiber structures on the permeation characteristics of carbon dioxide and nitrogen gases through these membrane were investigated. As the concentration of the $\gamma$-butyrolactone (GBL) in dope solution, acting as a swelling agent was increased, the structure of hollow fiber was changed from the finger to sponge type. The permeabilities of gases (CO$_{2}$, N$_{2}$) through these membrane were measured over the wide range of pressure under different temperature. The effect of water vapor on the permeabilities of gases was also investigated. The measured permeabilities showed the different characteristics depending on the structure of membranes. It was found that the flow through the pores were dominant over the polymers matrix. Blocking effect by water vapor in the pores of skin layer greatly improved the ideal separation factor of carbon dioxide/nitrogen.

  • PDF

Removal of toluene using the 2-stage hollow fiber membrane-hybrid reactor (중공사막을 적용한 2단 멤브레인 하이브리드 반응기에 의한 톨루엔 제거)

  • Kim, Jin-Sung;Gu, So-Hee;Kim, Tae-Hyeong;Lee, Myoung-Joo;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.287-293
    • /
    • 2010
  • In this study, the toluene gas in VOCs was removed using bioreactor which applied with hollow fiber membrane and Pseudomonas sp. TDB-4. The EBRT of each reactor are controlled 60 sec(R-1) and 30 sec(R-2) and inlet tolune concentration of both R-1 and R-2 is controlled from 25ppm to 500 ppm. Up to 500 ppm of toluene concentration, the toluene removal efficiency of R-1 and R-2 are 92% and 81%, and theirs removal capacities are about 100 g/$m^3$/hr and 180 g/$m^3$/hr, respectively. In addition, according to this study, toluene removal efficiencies at the hollow fiber are approximately 70%(60 sec) and 45%(30sec).

Application of Polymer Brush to Enzyme-Multilayered Porous Hollow-Fiber Membrane

  • Kawakita Hidetaka;Uezu Kazuya;Tsuneda Satoshi;Saito Kyoichi;Tamada Masao;Sugo Takanobu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.11a
    • /
    • pp.142-145
    • /
    • 2004
  • Anion-exchange porous hollow-fiber membranes with a thickness of about 1.2 mm and a pore size of about $0.30{\mu}m$ were used as a supporting matrix to immobilize cycloisomaltooligosaccharide glucanotransferase (CITase). CITase was immobilized to the membrane via anion-exchange adsorption and by subsequent enzymatic cross-linking with transglutaminase, the amount of which ranged from 3 to 110 mg per g of the membrane. The degree of enzyme multilayer binding was equivalent to 0.3 to 9.8. Dextran, as the substrate, was converted into seven- to nine-glucose-membered cycloisomaltooligosaccharides (CI-7, -8, and -9) at a maxi mum yield of $28\%$ in weight at a space velocity of 10 per hour during the permeation of $2.0(w/w)\%$ dextran solution across the CITase-immobilized porous hollow-fiber membrane.

  • PDF