• Title/Summary/Keyword: Hom-algebra

Search Result 9, Processing Time 0.026 seconds

COHOMOLOGY AND DEFORMATIONS OF HOM-LIE-YAMAGUTI COLOR ALGEBRAS

  • Issa, A. Nourou
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.271-291
    • /
    • 2021
  • Hom-Lie-Yamaguti color algebras are defined and their representation and cohomology theory is considered. The (2, 3)-cocycles of a given Hom-Lie-Yamaguti color algebra T are shown to be very useful in a study of its deformations. In particular, it is shown that any (2, 3)-cocycle of T gives rise to a Hom-Lie-Yamaguti color structure on T⊕V , where V is a T-module, and that a one-parameter infinitesimal deformation of T is equivalent to that a (2, 3)-cocycle of T (with coefficients in the adjoint representation) defines a Hom-Lie-Yamaguti color algebra of deformation type.

ON HOM-LIE TRIPLE SYSTEMS AND INVOLUTIONS OF HOM-LIE ALGEBRAS

  • Yara, Hamdiatou;Zoungrana, Patricia L.
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.363-373
    • /
    • 2022
  • In this paper we mainly establish a relationship between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems. We show that the -1-eigenspace of any involution on any multiplicative Hom-Lie algebra becomes a Hom-Lie triple system and we construct some examples of Hom-Lie triple systems using some involutions of some classical Hom-Lie algebras.

α-TYPE HOCHSCHILD COHOMOLOGY OF HOM-ASSOCIATIVE ALGEBRAS AND BIALGEBRAS

  • Hurle, Benedikt;Makhlouf, Abdenacer
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1655-1687
    • /
    • 2019
  • In this paper we define a new type of cohomology for multiplicative Hom-associative algebras, which generalizes Hom-type Hochschild cohomology and fits with deformations of Hom-associative algebras including the deformation of the structure map ${\alpha}$. Moreover, we provide various observations and similarly a new type cohomology of Hom-bialgebras extending the Gerstenhaber-Schack cohomology for Hom-bialgebras and fitting with formal deformations including deformations of the structure map.

Γ - BCK-ALGEBRAS

  • Eun, Gwang Sik;Lee, Young Chan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • In this paper we prove that if Y is a poset of the form $\underline{1}{\oplus}Y^{\prime}$ for some subposet Y' then BCK(Y) is a ${\Gamma}$-BCK-algebra. Moreover, if X is a BCI-algebra then Hom(X, BCK(Y)) is a positive implicative ${\Gamma}$-BCK-algebra.

  • PDF

PROPERTIES OF GENERALIZED BIPRODUCT HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.323-333
    • /
    • 2010
  • The biproduct bialgebra has been generalized to generalized biproduct bialgebra $B{\times}^L_H\;D$ in [5]. Let (D, B) be an admissible pair and let D be a bialgebra. We show that if generalized biproduct bialgebra $B{\times}^L_H\;D$ is a Hopf algebra with antipode s, then D is a Hopf algebra and the identity $id_B$ has an inverse in the convolution algebra $Hom_k$(B, B). We show that if D is a Hopf algebra with antipode $s_D$ and $s_B$ in $Hom_k$(B, B) is an inverse of $id_B$ then $B{\times}^L_H\;D$ is a Hopf algebra with antipode s described by $s(b{\times}^L_H\;d)={\Sigma}(1_B{\times}^L_H\;s_D(b_{-1}{\cdot}d))(s_B(b_0){\times}^L_H\;1_D)$. We show that the mapping system $B{\leftrightarrows}^{{\Pi}_B}_{j_B}\;B{\times}^L_H\;D{\rightleftarrows}^{{\pi}_D}_{i_D}\;D$ (where $j_B$ and $i_D$ are the canonical inclusions, ${\Pi}_B$ and ${\pi}_D$ are the canonical coalgebra projections) characterizes $B{\times}^L_H\;D$. These generalize the corresponding results in [6].

SAMELSON PRODUCTS IN FUNCTION SPACES

  • GATSINZI, JEAN-BAPTISTE;KWASHIRA, RUGARE
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1297-1303
    • /
    • 2015
  • We study Samelson products on models of function spaces. Given a map $f:X{\rightarrow}Y$ between 1-connected spaces and its Quillen model ${\mathbb{L}}(f):{\mathbb{L}}(V){\rightarrow}{\mathbb{L}}(W)$, there is an isomorphism of graded vector spaces ${\Theta}:H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W))){\rightarrow}H_*({\mathbb{L}}(W){\oplus}Der({\mathbb{L}}(V),{\mathbb{L}}(W)))$. We define a Samelson product on $H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W)))$.