• Title/Summary/Keyword: Horizontal Surface Discharge

Search Result 32, Processing Time 0.026 seconds

Determination of Parameters for 3-Dimensional Electrical Discharge Machining by a Tool Electrode Surface (공구전극곡면에 의한 3차원 방전가공조건의 결정)

  • 주상윤;이건범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • This paper presents a method for determining machining parameters in 3-dimentional electrical discharge machining(EDM). The parameters are the peak value of currents, the pulse-on time, and the pulse-off time. It is known that they influence the performance of EDM more than the other else. The parameters are determined from the discharge area between a tool electrode and a work piece. The discharge area is directly influenced by the geometry of a tool surface and the tool discharge position. The discharge area on a tool discharge position is calculated from intersection curves between the tool surface and a horizontal plane. The grid search method is applied to determine the intersection curves. An example is introduced to show that the machining parameters are obtained from the surface geometry of a tool electrode.

  • PDF

Effects of Size and Shape of Drain on Horizontal Vacuum Drain (배수재의 직경과 형상변화가 수평진공배수에 미치는 영향)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Lee, Byung-Kon
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.293-301
    • /
    • 2001
  • This paper is experimental results of investigating the efficiency of horizontal vacuum drainage system. Effects of size and shape of drain on horizontal vacuum drainage were studied. Model tests in the laboratory with soft marine clay were carried out with drain pipe of having three different diameters and PBD (Plastic Board Drain) of strip shape so that consolidation settlement of soft clay due to applied vacuum pressure, amount of discharge, ground settlement and distributions of pore pressure and undrained shear strength were measured during testing. From results of model test, amount of discharge due to vacuum pressure was increased with the diameter of pipe drain whereas the drain efficiency of pipe in per unit area of drain surface was decreased with diameter of pipe. The rate of discharge per unit time was reduced very fast with diameter of pipe. Settlement of ground surface with time was increased with diameter of pipe as a result of increase of discharge to drain pipe.

  • PDF

Distribution of Salinity and Temperature due to the Freshwater Discharge in the Yeongsan Estuary in the Summer of 201 (2010년 여름 담수방류에 의한 영산강 하구의 염분 및 수온 분포 변화)

  • Park, Hyo-Bong;Kang, Kiryong;Lee, Guan-Hong;Shin, Hyun-Jung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.139-148
    • /
    • 2012
  • The short-term variation of salinity and temperature in a dyked estuarine environment is mainly controlled by the freshwater discharge from the dyke. We examined the distribution of salinity and temperature by the freshwater discharge in the Yeongsan River estuary using the CTD data obtained from 8 stations through three surveys in June (weak discharge) and August (intensive discharge), 2010. During the weak discharge in June, the surface salinity showed 30-32.5 psu and its horizontal gradient was relatively high around Goha-do (0.25~0.32 psu/km). On the other hand, the salinity of the bottom layer was almost constant in the range of 33 psu. Water temperature ranged $19{\sim}21^{\circ}C$ and displayed higher gradient in north-south direction than the gradient of east-west direction. During the intensive freshwater discharge on August 12, the salinity dropped to 9~26 psu. The maximum horizontal gradient of surface salinity reached 3.8 psu/km in the north of Goha-do where the strong salinity front was formed, and the horizontal salinity gradient of bottom layer was 0.28 psu/km. The horizontal gradient of water temperature was $-0.45^{\circ}C/km$ in the surface and $-0.12^{\circ}C/km$ in the bottom with high surface temperature near the dyke and decreasing gradually to the river mouth. After 3 days of the intensive discharge ($3^{rd}$ survey), the surface salinity increased to 22~26 psu. However, there still existed relatively high horizontal gradient around Goha-do. In the mean time, the bottom salinity decreased to 26.5~27.5 psu, but its gradient was not big as much as the surface gradient. According to time series of CTD profile near the dyke, the discharged fresh water jetted down temporarily and then recovered gradually with the recovering speed of 0.4 m/hour for the discharge case of $13{\times}10^6$ ton. Due to the combined effects of freshwater discharge and surface heating during the summer of 2010, the Yeongsan estuary, in general, underwent intensified vertical stratification, which in turn caused the inhibition of vertical mixing, especially inside area of estuary. Based on the spatial distribution of salinity and temperature, the Yeongsan estuary can be divided into three regions: the Goha-do area with strong horizontal gradient of salinity and temperature, inner estuary from Goha-do to the dyke with low salinity, and outer estuary from Goha-do to the coasts with relatively high salinity.

A Study of Horizontal Surface Discharge Characteristics for Dew-Point of Dry-Air and Materials of Solid Insulator in Quasi-Uniform Field (Dry Air 중의 준평등전계에서 노점과 고체절연물 재질에 따른 수평연면방전 특성 연구)

  • Kang, Byoung-Chil;Seok, Jeong-Hoo;Min, Gyeong-Jun;Bae, Sungwoo;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2015
  • This study investigates the Horizontal surface discharge characteristics of solid insulators by varying their materials, and the dew-point of dry-air. The methodology of this study is that a quasi-uniform field is first applied to a test chamber. Then, the chamber is filled with dry-air as an insulation gas which pressure is varied from 1 to 6atm while applying an AC voltage to the chamber. The used solid insulators are teflon, polyethlene and polyurethane. As the dew-point is lower and the pressure of dry-air is higher, the flashover voltage of all solid insulators increases more. When each characteristic of the solid insulators is compared under the same gas pressure, the flashover voltage of teflon is the highest. Then, the flashover voltage of polyethlene is higher than that of polyurethane. Moreover, it is observed that the flashover voltage increases as the horizontal distance between the electrodes of each solid insulator become larger, respectively. However, as the pressure is increased, flashover voltage of the solid insulators is saturated. Therefore, selection of cost-effective insulation is needed in order to appropriate pressure.

Determination of Machining Parameters Considering Current Density in Three Dimensional Electrical Discharge Machining (3차원 방전가공에서 전류밀도를 고려한 방전가공조건 결정)

  • 이건범;김정두;최병훈;송희덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.100-106
    • /
    • 1999
  • Owing to the complexity of electrical discharge machining (EDM) phenomenon, it is very difficult to determine optimal machining parameters fer improving machining performance. This paper proposes a methodology for determining optimal electrical discharge machining parameters, which is maintaining suitable current density for increasing productivity or improving surface roughness. Machining area is closely related on optimal machining parameters in electrical discharge machining process, so calculation of machining area is needed in order to determine optimal machining parameters. In this study machining area, which is corresponding to the machining position, is calculated from intersection curves between the tool surface and a horizontal plane.

  • PDF

Development of Desktop Dry Electrical Discharge Machining (EDM) System and Experimental Performance Evaluations (데스크톱 건성 방전가공 시스템의 개발 및 실험적 성능평가)

  • Lee, Sang-Won;Oh, Young-Seok;Ahn, Soo-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.119-124
    • /
    • 2010
  • This paper addresses the design and fabrication of desktop die-sinking dry electrical discharge machining (EDM) system and its experimental performance analysis. The developed desktop dry EDM machine has the horizontal configuration with the size of $300{\times}200{\times}260mm$. The experimental performance analysis is conducted to investigate the effects of EDM conditions and dielectric gas temperature on the surface roughness of EDMed slots and number of EDM sparks. The experimental results demonstrate that low feed rate and large electrode displacement are good for better surface roughness and more number of EDM sparks. In addition, low temperature of dielectric gas results in better surface roughness.

Evaluation of Discharge Capacity for Gravel mat due to Geosynthetic Using Calibration Chamber Test (모형실험을 통한 토목섬유 적용에 따른 쇄석배수층 통수능 평가)

  • Kim, Jae-Hong;Im, Eun-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 2014
  • To create a large-scale complex, it is often the case to perform ground improvement by using vertical drain method after the reclamation of coastal soft ground, for construction period shortening and stable site renovation. During this process, the pore water migrates to the horizontal drainage layer of the ground surface through the vertical drain installed in the soft ground and discharged out to the open. In the past sand was used as the material for the horizontal drainage layer in numerous cases, however recently, due to material shortage and high pricing, the use of crushed stones has increased. To prevent mixing of the materials between the horizontal drainage layer and the upper landfill, geosynthetics (PPMat) are installed. However, the use of geosynthetics results in high additional cost for material purchase and installation, therefore it is necessary to examine the validity of the installation itself. In this study, to verify the necessity, model tests were performed. Results from the model tests indicate that the drainage ability of the horizontal drainage layer is barely affected by the application of geosynthetics.

Experimental Study on Wave Attenuating Effect of a Pneumatic Breakwater by Using a Multiple Parallel Manifold (다중 병렬 분기관을 이용한 압축공기 방파제의 소파효과에 관한 실험적 연구)

  • KIM JONG-WOOK;Shin Hyun-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.257-262
    • /
    • 2004
  • A series of preliminary model tests are performed to find out the wave attenuating effect of the pneumatic breakwater of environment friendly type, which is a bubble screen generated by releasing compressed air from a submerged multiple parallel manifold Rising bubbles induce vertical current, which produces horizontal currents flowing away from the bubble-screen area in both directions. Near bottom, the corresponding currents flow toward the bubble screen, thus completing the circulation pattern. The surface current moving against the direction of wave propagation causes some attenuation of the waves. It becomes more effective as the relative depth (d/ L) increases (short-period waves in deep water). With the same air-discharge, the multiple parallel manifold can be more effective for the attenuation of longer waves through optimum arrangement of manifold number. installation depth, manifold gap, etc. The pneumatic breakwater will give a wide utilization as a device for protecting harbor facilities and as a simple, mobile breakwater.

  • PDF

A Proposal of Baseflow using Discharge Measurement Method in the Streams of Island (도서지역 하천의 기저유출량 산정을 위한 유량측정방법 제안)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.561-569
    • /
    • 2014
  • The water resources system of Jeju-do Island entirely depends on groundwater. This study is making a precision observation of baseflow, surface water, water shortage that might be vulnerable to climate change and drought in future. The field observation of baseflow discharges in Akgeuncheon stream has regularly been made with ADCP and ADC and Flowmate every two weeks for twenty-two (22) months (July 8, 2011 to April 27, 2013). This paper represent the results of calculating discharge of a number of hydraulic structures (broad-crested weirs) with comparing and has been calculated more accurate discharges with suitability of different observation methods. The average discharge has been observed 0.851 $m^3/s$, whereas the average ADC and Flowmate is 0.709 $m^3/s$. Meanwhile, stream discharge has been calculated 0.709 $m^3/s$ through the broad-crested weir equation. The discharge has calculated with the weir equation greatly changed according to even a small change in the water level. However, it showed a similar trend to one of the observed discharge. Although, in past there were generating errors caused by observers' strides, vertical and horizontal flow velocity distribution when the average flow velocity had been measured, non-prismatic flow, turbulent flow and others in ADC. This study comes up with the weir equation is more suitable for the characteristics of Jeju-do could be presented through an observations of baseflow discharge.

Dispersion Analysis of Surface Discharged Heat Water In Shallow Coastal Area (천해역에서의 표층온배수 확산해석)

  • 서승원;김덕호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.340-345
    • /
    • 1995
  • Dispersion characteristics of surface discharge heat water in shallow region are investigated for coastal power plant with nearly constant depth of 20 meters by observing the seasonal depthwide temperature in several stations, which give or precise horizontal distribution and vertical structure of heat water. Surface discharged heat water in shallow coast in the Yellow Sea relies mainly on ambient tidal flow. so it behaves as free jet when the ambient now is strong and shows plumelike behavior during stagnant tide. According to observation the neat field region is estimated as 200-300 meters and shows distinct vertical profile and exponentially decreasing pattern from discharge point for this region. But there are no remarkable vertical distortion of temperature beyond 800 meters even though it is discharged from surface. Characteristic length scale model, CORMIX3, is applied and compared with the field date Overall tendency of CORMIX3 results resemble well with field data especially in near field and intermediate region.

  • PDF