• Title/Summary/Keyword: Host-mediated assay

Search Result 28, Processing Time 0.031 seconds

Evaluation of Mutagenicity with Gamgung-tang Using Host-Mediated Assay (Host-Mediated Assay를 이용한 감궁탕의 돌연변이원성 평가)

  • Shon, Yun-Hee;Kim, Cheorl-Ho;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.93-96
    • /
    • 2005
  • Mutagenicity of Gamgung-tang (GGT) was tested using in vitro S-9 mixture in vitro host-mediated assay with Salmonella typhimurium. In the previous reports, GGT was tested for the safety using Ames(-S-9), Bacillus subtilis Rec, and umu gene expression mutagenicity tests. Mutagenic activity in any assays we tested was not found. In this report, we further investigated safety of GGT after metabolic activation in vivo. Ames test with S-9 mixture and host-mediated assay with Salmonella typhimurium TA98 were used to identify metagenic property of GGT. GGT was administered 3 times with i.m. to Balb/c mice did not induced mutagenic effect in Salmonella typhimurium TA98 recovered from the liver after 3.5h with i.p. treatment. Over the entire dose range $(3{\sim}150mg/mouse)$ tested no toxicity was detected to the bacterial cells. These results suggest that there was no DNA damage and mutagenicity by GGT.

The antimutagenic effect and genetic safety of Buthus martensi Karsch aqua-acupuncture solution (BMKAS) (전갈(全蝎) 약침액(藥鍼液)의 항돌연변이(抗突然變異) 및 항암(抗癌) 효과(效果))

  • Kim, So-Houng;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.17 no.3
    • /
    • pp.151-167
    • /
    • 2000
  • Objective : The aim of this study is to determine the antimutagenic effect and genetic safety of Buthus martensi Karsch aqua-acupuncture solution(BMKAS) against various chemical carcinogens. Method : Ames(Salmonella typhimurium) test and Rec assay(Bacillus subtilis) were used as indicators for DNA damage and antimutagenesis. Furthermore, the levels of umu operon expression by measuring the ${\beta}$-galactosidase activity wete monitored with the SOS umu test using S. typhimurium 1535 containing plasmid pSK1002. And the host-mediated assay was used to investigate the mutagenicity and antimutagenicity of BMKAS inducing various chemical carcinogens after the activation with in vivo metabolic systems. Results : From the results, BMKAS did not atfect DNA of S. typhimurium and B. subtilis strains and showed no mutagenicity at the all concentrations of tested solution. Furthermore BMKAS dose-dependently protected the mutagenecity by AF-2, 2-AA and B[a]P. These phenomena was also similar to that after metabolic activation of BMKAS in in vivo system. Conclusion : These results suggested that BMKAS did not show the mutagenicity and protected the mutagenesis against various chemical carcinogens by four different methods used in this study.

  • PDF

Modifying Action of Chitosan Oligosaccharide on 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)-induced Mutagenesis

  • Shon, Yun-Hee;Ha, Young-Min;Jeong, Teuk-Rae;Kim, Cheorl-Ho;Nam, Kyung-Soo
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.90-94
    • /
    • 2001
  • The mutagenic activity of chitosan oligosaccharide and its antimutagenic effect against 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were investigated using the Salmonella/Ames test. No mutagenic activity was found in the Salmonella typhimurium strains TA 98 and TA 100, either with or without S9 activation. In contrast, chitosan oligosaccharide showed an inhibitory effect on the mutagenic activity of the cooked food mutagen, MeIQx, in the presence of S9. The influence of chitosan oligosaccharide on the genotoxicity of MeIQx was examined using a host-mediated assay in mice. The oligosaccharide was administered for 14 consecutive days (intragastric application at doses of 0.1 or 0.5 g/kg body wt) to mice. S. typhimurium TA 98 was given intravenously before an oral dose of MeIQx (4.5 mg/kg body wt.). The number of $his^+$ revertants were determined from the Ever of mice. The intragastric application of oligosaccharide led to a 47% reduction in the number of mutants induced by MeIQx (p<0.05). These results suggested that chitosan oligosaccharide had antimutagenic properties against MeIQx in vitro and in vivo.

  • PDF

Antimutagenic Effect of Polysaccharides Extracted from Soybeans Fermented with Basidiomycetes on 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)

  • Shon, Yun-Hee;Kim, So-Yeun;Lee, Jae-Sung;Lim, Jong-Kook;Nam, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.346-349
    • /
    • 2001
  • The antimutagenic activity of polysaccharides extracted from soybeans fermented with Agrocybe cylindracea (AC) or Phellinus igniarius (PI) against 2-amino-3,8-dimethylimidaxo[4,5-f]quinoxaline (MeIQx) was examined using a Salmonella/Ames test and host-mediated assay in mice. The polysaccharides from the soybeans fermented with A. Cylindracea and P. igniarius inhibited the mutagenic acitivity of the cooked food mutagen, MeIQx, by 31.2% and 35.3%, respectively. The polysaccharides also inhibited MeIQx genotoxicity in a dose-dependent manner in micel. These results suggest that the polysaccharides from soybeans fermented with A. cylindracea or P. igniarius exhibit antimutagenic properties against MeIQx in vitro and in vivo.

  • PDF

Inhibition of Human $CD8^+$ Cytotoxic T Lymphocyte (CTL) -mediated Cytotoxicity in Porcine Fetal Fibroblast Cells by Overexpression of Human Cytomegalovirus Glycoprotein Unique Short (US) 2 Gene

  • Park, K-W.;Yoo, J.Y.;Choi, K.M.;Yang, B.S.;Im, G.S.;Seol, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • Xenotransplantation of pig organs into humans is a potential solution for the shortage of donor organs for transplantation. However, multiple immune barriers preclude its clinical application. In particular, the initial type of rejection in xenotransplantation is an acute cellular rejection by host $CD8^+$ cytotoxic T lymphocyte (CTL) cells that react to donor major histocompatibility complex (MHC) class I. The human cytomegalovirus (HCMV) glycoprotein Unique Short (US) 2 specifically targets MHC class I heavy chains to relocate them from the endoplasmic reticulum (ER) membrane to the cytosol, where they are degraded by the proteasome. In this study we transfected the US2 gene into minipig fetal fibroblasts and established four US2 clonal cell lines. The integration of US2 into transgenic fetal cells was confirmed using PCR and Southern blot assay. The reduction of Swine Leukocyte Antigen (SLA)-I by US2 was also detected using Flow cytometry assay (FACS). The FACS analysis of the US2 clonal cell lines demonstrated a substantial reduction in SLA-I surface expression. The level (44% to 76%) of SLA-I expression in US2 clonal cell lines was decreased relative to the control. In cytotoxicity assay the rate of $CD8^+$ T cell-mediated cytotoxicity was significantly reduced to 23.8${\pm}$15.1% compared to the control (59.8${\pm}$8.4%, p<0.05). In conclusion, US2 can directly protect against $CD8^+$-mediated cell lysis. These results indicate that the expression of US2 in pig cells may provide a new approach to overcome the CTL-mediated immune rejection in xenotransplantation.

Development of Diagnostic Technology of Xylella fastidiosa Using Loop-Mediated Isothermal Amplification and PCR Methods

  • Kim, Suyoung;Park, Yujin;Kim, Gidon
    • Research in Plant Disease
    • /
    • v.27 no.1
    • /
    • pp.38-44
    • /
    • 2021
  • Xylella fastidiosa is the most damaging pathogen in many parts of the world. To increase diagnostic capability of X. fastidiosa in the field, the loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assay were developed to mqsA gene of citrate-synthase (XF 1535) X. fastidiosa and evaluated for specificity and sensitivity. Both assays were more robust than current published tests for detection of X. fastidiosa when screened against 16 isolates representing the four major subgroups of the bacterium from a range of host species. No cross reaction with DNA from healthy hosts or other species of bacteria has been observed. The LAMP and PCR assays could detect 10-4 pmol and 100 copies of the gene, respectively. Hydroxynaphthol blue was evaluated as an endpoint detection method for LAMP. There was a significant color shift that signaled the existence of the bacterium when at least 100 copies of the target template were present.

Development of a Loop-mediated Isothermal Amplification Detection Assay for Verticillium dahliae Infection in Chrysanthemum (국화에 발생하는 반쪽시들음병균 Verticillium dahliae 검출용 등온 증폭법 개발)

  • Back, Chang-Gi;Park, Mi-Jeong;Han, Kyung-Sook;Park, Jong-Han
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.437-441
    • /
    • 2019
  • Verticillium wilt disease is caused by a fungal plant pathogen Verticillium dahliae, which attacks commercial crops such as chrysanthemum. The conventional methods so far used to identify this fungal pathogen require high expertise and are time-consuming. Therefore, in this study, we developed an assay for the rapid and specific detection of V. dahliae infection using loop-mediated isothermal amplification (LAMP) method. For this assay, four primers for LAMP were designed for targeting cellulose-growth-specific protein partial mRNA gene in Verticillium dahliae. Under standard condition, the optimum reaction temperature for amplification is around 60 ℃ within 60 minutes. This LAMP assay was designed to amplify only present in V. dahliae. When this LAMP assay applied to the DNAs for four other soil-borne fungi and host plants, no amplification was detected. Therefore, this LAMP assay we developed for V. dahliae is expected to do detection at the early stage of its infection. The fast and reliable detection method will allow us to develop effective management system to monitor and control infection of this pathogen in chrysanthemum plant.

Protein Kinase $C-{\alpha}$ Regulates Toll-like Receptor 4-Mediated Inducible Nitric Oxide Synthase Expression

  • Lee, Jin-Gu;Chin, Byung-Rho;Baek, Suk-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • Purpose: The nitric oxide (NO) release by inducible nitric oxide synthase (iNOS) is the key events in macrophage response to lipopolysaccharide (LPS) which is suggested to be a crucial mediator for inflammatory and innate immune responses. NO is an important mediator involved in many host defense action and may also lead to a harmful host response to bacterial infection. However, given the importance of iNOS in a variety of pathophysiological conditions, control of its expression and signaling events in response to LPS has been the subject of considerable investigation. Materials and Methods: The Raw264.7 macrophage cell line was used to observe LPS-stimulated iNOS expression. The expression of iNOS is observed by Western blot analysis and real-time RT-PCR. Protein kinase C $(PKC)-{\alpha}$ overexpressing Raw264.7 cells are established to determine the involvement of $PKC-{\alpha}$ in LPS-mediated iNOS expression. $NF-{\kappa}B$ activity is measured by $I{\kappa}B{\alpha}$ degradation and $NF-{\kappa}B$ luciferase activity assay. Results: We found that various PKC isozymes regulate LPS-induced iNOS expression at the transcriptional and translational levels. The involvement of $PKC-{\alpha}$ in LPS-mediated iNOS induction was further confirmed by increased iNOS expression in $PKC-{\alpha}$ overexpressing cells. $NF-{\kappa}B$ dependent transactivation by LPS was observed and $PKC-{\alpha}$ specific inhibitory peptide abolished this activation, indicating that $NF-{\kappa}B$ activation is dependent on $PKC-{\alpha}$. Conclusion: Our data suggests that $PKC-{\alpha}$ is involved in LPS-mediated iNOS expression and that its downstream target is $NF-{\kappa}B$. Although $PKC-{\alpha}$ is a crucial mediator in the iNOS regulation, other PKC isozymes may contribute LPS-stimulated iNOS expression. This finding is needed to be elucidated in further study.

Dose-Dependent Inhibition of Melanoma Differentiation-Associated Gene 5-Mediated Activation of Type I Interferon Responses by Methyltransferase of Hepatitis E Virus

  • Myoung, Jinjong;Min, Kang Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1137-1143
    • /
    • 2019
  • Hepatitis E virus (HEV) accounts for 20 million infections in humans worldwide. In most cases, the infections are self-limiting while HEV genotype 1 infection cases may lead to lethal infections in pregnant women (~ 20% fatality). The lack of small animal models has hampered detailed analysis of virus-host interactions and HEV-induced pathology. Here, by employing a recently developed culture-adapted HEV, we demonstrated that methyltransferase, a non-structural protein, strongly inhibits melanoma differentiation-associated gene 5 (MDA5)-mediated activation of type I interferon responses. Compared to uninfected controls, HEV-infected cells display significantly lower levels of $IFN-{\beta}$ promoter activation when assessed by luciferase assay and RT-PCR. HEV genome-wide screening showed that HEV-encoded methyltransferase (MeT) strongly inhibits MDA5-mediated transcriptional activation of $IFN-{\beta}$ and $NF-{\kappa}B$ in a dose-responsive manner whether or not it is expressed in the presence/absence of a tag fused to it. Taken together, current studies clearly demonstrated that HEV MeT is a novel antagonist of MDA5-mediated induction of $IFN-{\beta}$ signaling.

Anti-apoptosis effects by Eimeria tenella infection in Madin-Darby bovine kidney cells

  • Lee, Hyun-A;Hong, Sun-Hwa;Chung, Yung-Ho;Kim, Ok-Jin
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.2
    • /
    • pp.105-109
    • /
    • 2012
  • Apoptosis is a host defense mechanism that the cell uses to limit production of infectious pathogens. Although many bacteria, viruses and parasites can induce apoptosis in infected cells, some pathogens usually exhibit the ability to suppress the induction of apoptosis in the infected cells. Sophisticated evasion strategies of obligate intracellular parasites, in particular prevention of host cell apoptosis, are necessary to ensure successful replication. To study the ability of Eimeria tenella in this regard, in vitro experiments were performed applying Madin-Darby bovine kidney (MDBK) cells as host cell. We have demonstrated that productive infection of adherent cell lines by E. tenella resulted in an anti-apototic effect. This phenomenon was confirmed using in situ terminal deoxynucleotidyl transferase-mediated (TdT) deoxyuridine triphosphates (dUTP)-fluorescein nick end labeling (TUNEL) assay to detect apoptosis. Therefore, E. tenella could complete its cycle of productive infection while inducing anti-apoptosis in the infected cells. This finding might have implications for the pathobiology of E. tenella and other Eimeria species.