• Title/Summary/Keyword: Hot temperature

Search Result 3,995, Processing Time 0.027 seconds

The Correction of Fluid Temperature for Hot-wire Anemometer (열선 유속계에 대한 유체 온도의 보정)

  • 심상학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.92-97
    • /
    • 1999
  • This paper reports by simple method that is quickly corrected the effects of fluid temperature for the hot wire anemometer. We are concerned with a variable output of hot wire anemometer on arbitrary fluid temperature. Hot wire by measuring boundary layer of turbulent flow has been calibrated by arbitrary temperature lower than 10$0^{\circ}C$, and velocity lower than 20m/s. As a result, we could pick up the temperature factor affected by output of hot wire anemometer from related in output of arbitrary temperature to output of room temperature. By using temperature factor on the output of hot wire anemometer, we also obtained that the relationship of velocity was of no effect by temperature of fluids. About results of calibrated hot wire, uncertainly of velocity is 2.15% at room temperature and 3.1% at arbitrary temperature.

  • PDF

A Study on the Hot Spot Temperature in 154kV Power Transformers

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Woo, Jung-Wook;Kwak, Joo-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The life of a power transformer is dependent on the life of the cellulose paper, which influenced by the hot spot temperature. Thus, the determination of the cellulose paper's life requires identifying the hot spot temperature of the transformer. Currently, however, the power transformer uses a heat run test is used in the factory test to measure top liquid temperature rise and average winding temperature rise, which is specified in its specification. The hot spot temperature is calculated by the winding resistance detected during the heat run test. This paper measures the hot spot temperature in the single-phase, 154kV, 15/20MVA power transformer by the optical fiber sensors and compares the value with the hot spot temperature calculated by the conventional heat run test in the factory test. To measure the hot spot temperature, ten optical fiber sensors were installed on both the high and low voltage winding; and the temperature distribution during the heat run test, three thermocouples were installed. The hot spot temperature shown in the heat run test was $92.6^{\circ}C$ on the low voltage winding. However, the hot spot temperature as measured by the optical fiber sensor appeared between turn 2 and turn 3 on the upper side of the low voltage winding, recording $105.9^{\circ}C$. The hot spot temperature of the low voltage winding as measured by the optical fiber sensor was $13.3^{\circ}C$ higher than the hot spot temperature calculated by the heat run test. Therefore, the hot spot factor (H) in IEC 60076-2 appeared to be 2.0.

Effects of Natural Convection Cells on Temperature Uniformity in Hot Plate Chamber for Wafer Baking Process (반도체용 핫플레이트 챔버 내 자연대류가 핫플레이트 표면 온도 균일도에 미치는 영향)

  • Park, Jun-Su;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2512-2517
    • /
    • 2007
  • Effect of natural convention for hot plate surface temperature uniformity was studied by experiments that were adjusted height of chamber and temperature difference. The hot plate chamber is composed of the hot plate and the upper heater and adiabatic vertical wall. The hot plate diameter is 220mm and maintains temperature at $150^{\circ}C$. Flow pattern compares with surface temperature and confirms that natural convection affects on temperature uniformity of hot plate surface. In case, temperature non-uniformity of hot plate surface is due to heater pattern, lots of weak and small flow cells more improve temperature uniformity than stronger flow cells or non-developing flow cell. Improve temperature uniformity $1.2^{\circ}C$ when developing weak and small flow cells.

  • PDF

Can Ambient Temperature Change Affect the Efficacy of Acupuncture on the Postmenopausal Hot Flash? (기온 변화는 폐경후 안면홍조의 침 치료 효과에 영향을 미치는가?)

  • Roh, Jin-Ju;Ahn, Hong-Yup;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.4
    • /
    • pp.123-131
    • /
    • 2007
  • Purpose: To find the correlation between ambient temperature change and the efficacy of acupuncture on the postmenopausal hot flash. Methods: 52 patients entered a randomized clinical trial which was to verify the efficacy of acupuncture on postmenopausal hot flash. Participants were treated with optimal/minimal acupuncture in the course of 13 weeks. 34 of 52 visited for the temperature-rising period(Group 1), while 18 of 52 for the temperature-falling period(Group 2), 100mm hot flash VAS and average temperature were taken 18 times from each person. Linear mixed effects model was used to find the correlation between temperature and hot flash VAS score(p-value<0.05). Group1/2, optimal/minimal acupuncture, age, age of menarche, height, weight, percent body fat, BMI, waist-hip ratio, past history of hysterectomy and HRT were also examined. Results: Period of treatment had influence on the hot flash VAS. As time went by, hot flash decreased(p<.0000). Participants who underwent minimal acupuncture showed higher hot flash VAS(p=0.0479) and as waist-hip ratio rose, hot flash increased(p<.0000). As the temperature rose, hot flash VAS score became lower(p=0.0143) and it was because 34 of 52 participants were treated for the temperature-rising period. Group 1/2 had no interrelation with hot flash(p=0.5741). Conclusion: Hot flash diminished as participants were treated with acupuncture, independently of whether the ambient temperature rises or falls.

  • PDF

Effect of Hot-compaction Temperature on the Magnetic Properties of Anisotropic Nanocrystalline Magnets

  • Li, W.;Wang, H.J.;Lin, M.;Lai, B.;Li, D.;Pan, W.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.300-303
    • /
    • 2011
  • The effect of the hot-compaction temperature on the microstructure and magnetic properties of anisotropic nanocrystalline magnets was investigated. The hot-compaction temperature was found to impact both the magnetic properties and the microstructure of die-upset magnets. The remanence of the isotropic precursor increases slightly with the improved hot-compaction temperature, and the grains start to grow on the flake boundary at higher hot-compaction temperatures. After hot deformation, it was found that the change in the magnetic properties was the inverse of that observed with the hot-compaction temperature. Microstructural investigation showed that die-upset magnets inherit the microstructural characteristics of their precursor. For the die-upset magnets, hot pressed at low temperature, scarcely any abnormal grain growth on the flake boundary can be seen. For those hot pressed at higher temperatures, however, layers with large equiaxed grains could be observed, which accounted for the poor alignment during the hot deformation, and thus the poor magnetic properties.

EFFECTS OF NICARBAZIN AND HOT TEMPERATURE ON EVAPORATIVE WATER LOSS, ACID-BASE BALANCE, BODY TEMPERATURE AND CARBON DIOXIDE EXHALATION IN ADULT ROOSTERS

  • Lee, B.D.;Lee, S.K.;Hyun, W.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • Two experiments were conducted to study the effect of ambient temperature and nicarbazin on SCWL adult roosters. In Experiment 1, the effects of nicarbazin supplementation (125 ppm) on the water metabolism, blood acid-base balance; and rectal temperature of 16 birds in normal ($21^{\circ}C$) and hot ($35-36^{\circ}C$) temperature were investigated. In Experiment 2, the evaporative water loss and $CO_2$ exhalation from 8 birds were measured individually with an open-circuit gravimetric respiration apparatus in normal ($21^{\circ}C$) and hot ($33.5-34^{\circ}C$) temperature. The amount of water intake and evaporative water loss increased in birds under heat stress (HS). Nicarbazin exacerbated these effect in hot temperature. Also, nicarbazin decreased the blood $pCO_2$ and increased pH of HS birds. The rectal temperature of birds increased in hot temperature, and nicarbazin worsened this effect. The evaporative water loss, measured directly with respiration apparatus (Experiment 2), was increased in hot temperature. HS decreased the amount of $CO_2$ exhalation. Nicarbazin did not exert ant effect on either of these measurements, probably due to the limited duration (2 h) of the trial. The decrease in $CO_2$ exhalation by HS birds could be explained by reduced metabolic rate, which helps homeothermy of birds in hot temperature.

The Effects of Hot Temperature on Impulsive Behaviors: The Role of Product Types as a Moderator

  • Ahn, Hee-Kyung
    • Asia Marketing Journal
    • /
    • v.14 no.3
    • /
    • pp.27-48
    • /
    • 2012
  • Temperature and weather are all around us, quite literally. Furthermore, temperature and weather not only permeate our atmosphere, constantly affecting our visceral states of warmth and coldness, but they metaphorically permeate our language. People, products, and ideas can all be "hot" or "cold." Given this ubiquity, it is perhaps surprising that relatively little research has systematically examined the influence of temperature on choice and judgment. Temperature-related words such as "hot" and "cold" are often used to describe impulsive and calculated behaviors, respectively. These metaphoric connotations of thermal concepts raise the question as to whether temperature, psychological states and decision making are related to each other, and if so, how. The current research examines these questions and finds support for a relationship. Across one field study and one laboratory experiment, I demonstrate that both hot ambient room temperature (Spa) and hot temperature primes (words) trigger decision outcomes in line with the metaphoric association between hot temperature and impulsivity. In the field study, participants were recruited in hot (40-50 degrees Celsius) and cold (10 degrees Celsius) rooms at a spa. Participants were simply asked to indicate their willingness-to-pay (WTP) for three product categories (travel package, birthday dinner, and cell phone). The results showed that participants in the hot room in comparison to those in the cold room were willing to pay more for the same products. Next, I tested if our results would go beyond ambient temperature and would hold if I were to prime temperature concepts by using a different priming method (i.e., subliminal vs. supraliminal). In line with the previous findings in the spa, participants in the hot priming condition were more likely to choose the wrong answer for the bat and baseball question than those in the cold priming condition. In addition, product type (e.g., pleasure vs. necessity) can moderate the effect of hot temperature on impulsivity. Mood and arousal did not mediate participants' responses. My findings seem to suggest that the effects of temperature on decision outcomes can be attributed to metaphoric associations rather than incidental mood or arousal. The current research applies a novel perspective in understanding the relationship between temperature and judgment and decision making. Also, the results have practical implications for packaging, advertising, merchandising, and pricing of goods and services, as well as for public policy and awareness. One of the most natural implications of my findings would be that retailers would be better off carrying more impulse purchase items on hot days. Furthermore, point-of-purchase promotions encouraging impulse purchase is more likely to be effective in retail environments with higher temperature than with lower temperature. In addition, advertisements and product packages evoking hot temperature associations (e.g., beach, sunshine, summer) might lead consumers to pay higher price for the advertised product than those with cold temperature associations.

  • PDF

Winding Temperature Measurement in a 154 kV Transformer Filled with Natural Ester Fluid

  • Kweon, Dongjin;Koo, Kyosun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.156-162
    • /
    • 2013
  • This paper measures the hot spot temperatures in a single-phase, 154 kV, 15/20 MVA power transformer filled with natural ester fluid using optical fiber sensors and compares them with those calculated by conventional heat run tests. A total of 14 optical fiber sensors were installed on the high-voltage and low-voltage windings to measure the hot spot temperatures. In addition, three thermocouples were installed in the transformer to measure the temperature distribution during the heat run tests. In the low-voltage winding, the hot spot temperature was $108.4^{\circ}C$, calculated by the conventional heat run test. However, the hot spot temperature measured using the optical fiber sensor was $129.4^{\circ}C$ between turns 2 and 3 on the upper side of the low-voltage winding. Therefore, the hot spot temperature of the low-voltage winding measured using the optical fiber sensor was $21.0^{\circ}C$ higher than that calculated by the conventional heat run test.

Analysis of HGAX Cycle for Reducing the Generator Temperature and Enhancing the Hot-Water Temperature (발생기 온도저감 및 고온열수 획득을 위한 Hybrid GAX 사이클 해석)

  • 강용태;윤희정;조현철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2002
  • The objectives of this paper are to develop an advanced GAX cycle named HGAX (Hybrid Generator Absorber heat exchanger) cycle, and to study the effect of key parameters on the cycle performance and the hot-water temperature from the condenser. New types of the HGAX cycle are developed by adding a compressor between the generator and the condenser- Type C (performance improvement and reduction of the generator temperature) and Type D (Hot-water temperature application). The solution temperature in the generator outlet is reduced to 168$^{\circ}C$ with the COP improvement of 19% compared to the standard GAX cycle. The hot-water temperature from the condenser is raised to 106$^{\circ}C$ for panel heating (Ondol heating) application.

Characteristics of Temperature Distribution of Wall, Floor, Air and Hot Water by Burying the Excel Pipe on the Floor and Wall of a Container House (컨테이너하우스의 바닥과 벽면에 엑셀파이프 매설에 의한 벽면, 바닥, 공기, 온수의 온도분포 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-100
    • /
    • 2022
  • A study was conducted to significantly increase the heat transfer area by simultaneously burying the excel pipe in the floor and wall of a container house, thereby greatly reducing the initial heating time. In addition, a small hot water boiler suitable for the heating load of a small container house with a maximum area of 6 m2 was studied. A wall-mounted hot water boiler was developed as a result of the study. When a hot water boiler is installed outdoors for heating, heat radiation energy is lost in winter from the hot water boiler and hot water pipe due to the low temperature. We propose an approach through which the energy loss was greatly reduced and the temperature of hot water increased in proportion to the operating time. Moreover, as the mass flow rate of the hot water flowing inside the excel pipe increased, the temperature of the hot water decreased. The temperature of the wall and floor surfaces of the container house increased in proportion to the increase in the mass flow rate of hot water flowing inside the excel tube. Natural convection heat transfer was realized from the wall and floor surfaces of the container house, and the heat transfer area was increased by a factor of 3 with respect to heat transfer area limited to the floor by the existing hot water panel. As a result, the initial temperature increase rate was much higher because of the larger heat transfer area.