• Title/Summary/Keyword: Hot-Standby Sparing

Search Result 7, Processing Time 0.025 seconds

A Study on the Advanced Reliability Assessment Method about Hot-Standby Sparing System for Railway Signaling (철도신호 대기이중중계구조 제어기의 향상된 신뢰도평가방법에 관한 연구)

  • Min, Geun-Hong;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1589-1595
    • /
    • 2007
  • This paper suggests the advanced reliability assessment tool for railway signaling Hot-Standby sparing system. Existing reliability assessment for Hot-Standby sparing system controller is done by using single module mean failure rate based on approximated Hot standby sparing system function. Although approximated Hot standby sparing system function can be applied to various Hot standby sparing system, however, it is not able to reflect the exact system structure. In this paper, we suggest the advanced reliability function by identifying changeover-related failure factors and common failure mode which is not considered in existing approximated Hot standby sparing system reliability function via developing Hot standby sparing system model for railway signaling and applying FMECA to this model. Also. we compare reliability assessment results for model system to reliability assessment for existing system.

A Study on Design and Reliability Assessment for Embedded Hot-Standby Sparing FT System Using Self-Checking Logic (자기검사회로를 이용한 대기이중계구조 결함허용제어기의 설계 및 신뢰도평가에 관한 연구)

  • Lee, Jae-Ho;Lee, Kang-Mi;Kim, Young-Kyu;Shin, Duc-Ko
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.725-731
    • /
    • 2006
  • Hot Standby sparing system detecting faults by using software, and being tolerant any faults by using Hardware Redundancy is difficult to perform quantitative reliability prediction and to detect real time faults. Therefore, this paper designs Hot Standby sparing system using hardware basis self checking logic in order to overcome this problem. It also performs failure mode analysis of Hot Standby sparing system with designed self checking logic by using FMEA (Failure Mode Effect Analysis), and identifies reliability assessment of the controller designed by quantifying the numbers of failure development by using FTA (Fault Tree Analysis)

A Study on Power Supply Method Design for Hot Standby Sparing System via Reliability Modeling (신뢰도모델링에 의한 이중계제어기 전원공급방식 설계에 관한 연구)

  • Shin, Duck-O;Lee, Kang-Mi;Lee, Jae-Ho;Kim, Yong-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.527-532
    • /
    • 2007
  • In this paper, we suggest those two design plans for power supply method of Hot Standby Sparing System; one is the plan using MTBF based on Constant Failure Rate, and the plan using Reliability Function is the other. Traditionally, RBD (Reliability Block Diagram) is used for reliability prediction which is required to meet any requirements before system operation. However, the system that has redundancy, such as Hot Standby Sparing System, Is not suitable for system reliability modeling using combination model, such as RBD. In this paper, therefore, we demonstrate that for redundancy controller, redundancy modeling design toward fault occurrence design is more effective to build up a system with higher reliability and achieve the effectiveness of loss cost due to maintenance and failure occurred in operation, rather than combinational modeling design.

Reliability Analysis of Hot-Standby Sparing System with Common Cause Failures for Railway (공통고장모드를 고려한 대기 이중계 구조의 철도 시스템 신뢰도 분석)

  • Park, Chan-woo;Chae, Eunkyung;Shin, Duck-ho
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.349-355
    • /
    • 2017
  • Failures of railway systems can result in train delays or accidents, and therefore high reliability is required to ensure safety of railway systems. To improve reliability, railway systems are designed with redundant systems so that the standby system will continue to function normally even if the primary system fails. Generally, overall system reliability can be evaluated by the reliabilities of the parts of the whole system and the reliability of the redundant system considering common failures in case of each system is not conform physical, functional and process independent. In this study, the reliability of the hot-standby sparing system is analyzed the independent systems and dependent systems with common failures. The reliability for the standby system can be effectively analysed using Markov models, which can model the redundant configuration and the state transition.

A Study on Enhanced Self-Checking Characteristics in Redundant Communication System (여분을 갖는 통신시스템에서의 자기검사특성 향상에 관한 연구)

  • 신덕호;김현기;이재훈;이창훈;이기서
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.352-359
    • /
    • 2000
  • In this paper, the method is used that each system isolates the part in which faults are occurred in case of fault occurrence since total system is designed in the type of hot standby sparing system construction and self-checking circuit in each system is attached to the memory being of the high failure rate in common communication system. Thus reliability and availability in system are improved. In this thesis, self-checking circuit was designed using 2 out of 6 code and didn't have any effect to the system operation. For the purpose of verification, each system attached with self-checking circuit was simulated through fault injection arid the continuity of each system in hot standby sparing system was tested in case that the system was switched when faults in the system were occurred.

  • PDF

The Inplementation of Fault-Tolerant Dual System Using the Hot-Standby Sparing Technique (핫 스탠바이 스페어링 기법을 이용한 고장 감내 이중화 시스템 설계)

  • Shin Jin wook;Park Dong sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1113-1122
    • /
    • 2004
  • This paper is basically to achieve the high-availability and high-reliability of the control system from the implementation of the fault-tolerant system using the hot-standby sparing technique. To meet the objective, we design and implement a board with fault tolerance I/O bus to detect the fault. Warm-standby sparing technique is the fault tolerance technique usually used for switching control system in present. This technique can be easily implemented, but can not detect the fault quickly and can malfunction because of the hardware fault. The hot-standby sparing fault tolerant technique implemented in this paper is consists of dual processor modules and a I/O processor using fault tolerant I/O bus. The proposed method can find the faults as soon as possible, so it can prevent from wrong operation. Also it is possible to normal re-service due to the short recovering time. To implement the fault-tolerant dual system with fault detection be, two daughter, called FTMA and FTIA, boards designed and implemented are applied to the system. And we also simulated the proposed method to verify the high-availability and high-reliability of the control system using Markov process.

Design of a Fault Tolerant System Employing Fault Detection Bus (고장 검출 버스를 이용한 고장 감내 시스템 설계)

  • 정우석;송광석;이광선;신진욱;박동선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.168-171
    • /
    • 1999
  • A fault-tolerant system should have a high availability and high reliability to maintain a given system stable against sudden faults in the system. In this paper, we propose a new types of fault tolerant system based on a fault detection bus. The fault detection bus is designed and implemented to detect any errors by comparing event-output signals from two processor modules. It employs the hot standby sparing fault detection method〔1〕 to provide continuity of services even if a system fault occurs. The prototype fault tolerant system is currently being implemented on a management system with two processor modules.

  • PDF