• Title/Summary/Keyword: Hot-gas bypass defrost

Search Result 3, Processing Time 0.026 seconds

Performance Evaluation of the Hybrid Defrost Process in the Fin-Tube Evaporators of Refrigerators (하이브리드 제상 방식을 적용한 냉장고용 핀-관 열교환기의 제상 성능 평가)

  • Lee, Su-Won;Park, Yong-Joo;Kweon, Lae-Un;Jeong, Young-Man;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.38-46
    • /
    • 2011
  • The hybrid defrost process combined with hot-gas bypass defrost and electric heater defrost was experimentally evaluated about its defrost performance in the fin-tube evaporators of household refrigerators. Also the hybrid defrost process was compared with only electric heater defrost process. The defrost efficiency of the hybrid defrost process was shown two times higher than electric heater defrost process. The defrost time of the hybrid defrost process was shorten about 10%~50% than electric heater defrost process. Thermal shock after defrost process was decreased about 50% for the case of the hybrid defrost. It was found that energy consumption ratio of defrost process was reduced up to 7.4% compared with 22.4% of electric heater defrost at the condition of $25^{\circ}C$ ambient temperature.

A Study on Performance Improvement of Heat Pump Adopting the Hot Gas Bypass Method (고온냉매 우회방법을 적용한 열펌프의 성능 개선 연구)

  • Kang, Shin-Hyung;Byun, Ju-Suk
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.235-242
    • /
    • 2006
  • This study experimentally investigates the performance improvement of the heat pump by adopting the hot gas bypass method and using the internal heat exchanger according to the automatic defrost test conditions of ISO 5151 This study compares the hot gas bypass method with the time step method, and investigates effect on outdoor coil fan speed when the hot gas of compressor outlet enter outdoor coil inlet after the frost formation. The tests were made for the fan speeds of the outdoor coil controlled at 90, 60 and 30% of the normal speed together with the case of the stationary fan. The performance of the heat pump is evaluated by variables such as COP, heat capacity, and the average COP during the 210 minutes heating mode. Results show that average COP of the hot gas bypass mettled is $2.2{\sim}6%$ higher than that of the time step method. When the outdoor coil fan speed is 60% (780 rpm) of the normal speed, it shows the best COP and heating capacity.