• 제목/요약/키워드: Hull form optimization

검색결과 65건 처리시간 0.021초

수학적 선형의 저항특성 추정 및 선형 최적화에 대한 연구 (Study on the Resistance Prediction and Hull Form Optimization for Mathematical Hull Forms)

  • 민계식;이연승;강선형;한범우
    • 대한조선학회논문집
    • /
    • 제41권3호
    • /
    • pp.1-12
    • /
    • 2004
  • In order to prepare the fuel-economic hull form design method for fine higher-speed ships, systematic theoretical and experimental study has been performed on the relation between hull form characteristics and ship's resistance and on the effect of the optimization of main hull form characteristics. The results of this study provide not only a great insight into the relation between ship's resistance and hull form characteristics, but also a proper direction of the optimization of main hull form characteristics for the improvement of ship's resistance characteristics.

Form Parameter Design 을 이용한 선형최적화 (Hull Form Optimization Based on From Parameter Design)

  • 이연승;최영복
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.562-568
    • /
    • 2009
  • Hull form generation and variation methods to be mainly discussed in this study are based on the fairness optimized B-Spline form parameter curves (FOBFC). These curves can be used both as indirect modification function for variation and as geometric entities for hull form generation. The flexibility and functionality of geometric control technique play the most important role for the success of hull form optimization. This study shows the hydrodynamic optimization process and the characteristics of optimum design hull forms of a 14,000TEU containership and 60K LPG carrier. SHIPFLOW has been used as a CFD solver and FS-Framework as a geometric modeler and optimizer.

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제9권3호
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

소형 쌍동선의 저항성능 개선을 위한 선형 최적화 기법 개발 (Development of Hull Form Optimization Method for Improving Resistance Performance of Small Catamaran )

  • 박정윤;이종현;서장훈;박동우
    • 대한조선학회논문집
    • /
    • 제60권5호
    • /
    • pp.332-340
    • /
    • 2023
  • The present study established hull form optimization for small catamaran based on variations of knuckle lines. Four knuckle lines below the free surface were employed as design variables. Knuckle lines were independently transformed within remaining the main dimensions of the existing hull. For the hull form optimization, the SHERPA algorithm of HEEDS was utilized. Computational fluid dynamics was employed to estimate the resistance performance. The optimal hull showed the improvement of resistance performance of 9.3% than that of existing hull. The improvement of wave and pressure distributions for optimal hull was confirmed. Throughout the present study, it is expected that established optimization method can be applied for various small vessels such as fishing and leisure boats.

고속 Ro-Pax선형의 조파저항성능 향상을 위한 최적 선형설계에 관한 연구 (Study for Optimal Hull Form Design of a High Speed Ro-Pax Ship on Wave-making Resistance Performance)

  • 박동우;최희종
    • 한국항해항만학회지
    • /
    • 제36권10호
    • /
    • pp.787-793
    • /
    • 2012
  • 최적화기법과 선형변환 자동화기법을 도입하여 고속 중형 Ro-Pax선박의 조파저항성능을 향상시킬 수 있는 선형설계방법에 대하여 연구하였다. 최적화기법으로는 SQP(sequential quadratic programming)을 적용하였으며, 선형변환 자동화기법으로는 NURBS(Non-Uniform Rational B-Spline)기법을 적용하였다. 목적함수인 선박의 조파저항성능을 예측하기 위하여 비선형 자유수면 경계조건과 선체의 침하량을 고려한 비점성 유동 해석 기법인 패널법을 적용하였다. 기준선형에 대하여 선형최적화를 수행하였으며 그 결과로 도출된 최적선형에 대하여 모형선을 제작하여 모형시험을 수행하였다. 기준선형과 최적선형에 대한 수치해석을 수행하여 얻은 결과와 최적선형에 대한 모형시험을 수행하여 얻은 결과를 서로 비교하였다.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

Hull-form optimization of a container ship based on bell-shaped modification function

  • Choi, Hee Jong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.478-489
    • /
    • 2015
  • In the present study, a hydrodynamic hull-form optimization algorithm for a container ship was presented in terms of the minimum wave-making resistance. Bell-shaped modification functions were developed to modify the original hull-form and a sequential quadratic programming algorithm was used as an optimizer. The wave-making resistance as an objective function was obtained by the Rankine source panel method in which non-linear free surface conditions and the trim and sinkage of the ship were fully taken into account. Numerical computation was performed to investigate the validity and effectiveness of the proposed hull-form modification algorithm for the container carrier. The computational results were validated by comparing them with the experimental data.

Optimization Approach for a Catamaran Hull Using CAESES and STAR-CCM+

  • Yongxing, Zhang;Kim, Dong-Joon
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.272-276
    • /
    • 2020
  • This paper presents an optimization process for a catamaran hull form. The entire optimization process was managed using the CAD-CFD integration platform CAESES. The resistance of the demi-hull was simulated in calm water using the CFD solver STAR-CCM+, and an inviscid fluid model was used to reduce the computing time. The Free-Form Deformation (FFD) method was used to make local changes in the bulbous bow. For the optimization of the bulbous bow, the Non-dominated Sorting Genetic Algorithm (NSGA)-II was applied, and the optimization variables were the length, breadth, and angle between the bulbous bow and the base line. The Lackenby method was used for global variation of the bow of the hull. Nine hull forms were generated by moving the center of buoyancy while keeping the displacement constant. The optimum bow part was selected by comparing the resistance of the forms. After obtaining the optimum demi-hull, the distance between two demi-hulls was optimized. The results show that the proposed optimization sequence can be used to reduce the resistance of a catamaran in calm water.

고속 대형여객선의 선형특성에 대한 연구 (Review on the Hull form Characteristics of a High-Speed Large Passenger ferry)

  • 장학수;이화준;주영렬;전호환
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.1-7
    • /
    • 2003
  • Large Passenger Ferry has been delivered with a tendency of high speed since 1990´s. More than 50 ferries that exceed 25 knots in service speed are operating or under construction these days. Therefore, the hull form development for the large size ferry should be carefully carried out with some design points such as high service speed, severe criteria for stability, and complex design of appendages. This paper reviewed principal particulars and hull form characteristics of a high-speed large passenger ferry. It is also suggested the optimization method of hull form and appendages in point of resistance & propulsion performance. Finally, it is also introduced a high-speed large passenger ferry developed by Samsung Heavy Industries Co., Ltd., the key design points in hull form development.