• Title/Summary/Keyword: Humanoid nao

Search Result 7, Processing Time 0.021 seconds

CPG-based Adaptive Walking for Humanoid Robots Combining Feedback (피드백을 결합한 CPG 기반의 적응적인 휴머노이드 로봇 보행)

  • Lee, Jaemin;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.683-689
    • /
    • 2014
  • The paper introduces dynamic generation technique of foot trajectories for humanoid robots using CPG(Central Pattern Generator) and proposes adaptive walking method for slope terrains combining a feedback network. The proposed CPG based technique generates the trajectory of foot in the Cartesian coordinates system and it can change the step length adaptively according to the feedback information. To cope with variable slope terrains, the sensory feedback network in the CPG are designed using the geometry relationship between foot position and body center position such that humanoid robot can maintain its stability. To demonstrate the effectiveness of the proposed approach, the experiments on humanoid robot Nao are executed in the Webot simulation. The performance and motion features of the CPG based approach are compared and analyzed focusing on the adaptability in slope terrains.

Generation of Walking Trajectory of Humanoid Robot using CPG (CPG를 이용한 휴머노이드 로봇 Nao의 보행궤적 생성)

  • Lee, Jaemin;Seo, Kisung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • The paper introduces dynamic generation technique of foot trajectories using CPG(Central Pattern Generator). In this approach, the generated foot trajectories can be changeable according to variable outputs of CPG in various environments, because they are given as mapping functions of the output signals of the CPG oscillators. It enables to provide an adaptable foot trajectory for environmental change. To demonstrate the effectiveness of the proposed approach, experiments on humanoid robot Nao is executed in the Webot simulation. The performance and motion features of CPG based approach is analyzed.

A Combined CPG and GA Based Adaptive Humanoid Walking for Rolling Terrains (굴곡진 지형에 대한 CPG 및 GA 결합 기반 적응적인 휴머노이드 보행 기법)

  • Kyeong, Deokhwan;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.663-668
    • /
    • 2018
  • A combined CPG (Central Pattern Generator) based foot trajectory and GA (Genetic Algorithm) based joint compensation method is presented for adaptive humanoid walking. In order to increase an adaptability of humanoid walking for rough terrains, the experiment for rolling terrains are introduced. The CPG based foot trajectory method has been successfully applied to basic slops and variable slops, but has a limitation for the rolling terrains. The experiments are conducted in an ODE based Webots simulation environment using humanoid robot Nao to verify a stability of walking for various rolling terrains. The proposed method is compared to the previous CPG foot trajectory technique and shows better performance especially for the cascade rolling terrains.

Evolutionary Generation Based Color Detection Technique for Object Identification in Degraded Robot Vision (저하된 로봇 비전에서의 물체 인식을 위한 진화적 생성 기반의 컬러 검출 기법)

  • Kim, Kyoungtae;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1040-1046
    • /
    • 2015
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection of humanoid robot vision. Existing color detection methods have used linear/nonlinear transformation of RGB color-model. However, most of cases have difficulties to classify colors satisfactory because of interference of among color channels and susceptibility for illumination variation. Especially, they are outstanding in degraded images from robot vision. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various environments in robot vision for real humanoid Nao.

A Combined CPG Foot Trajectory and GP Joint Compensation Method for Adaptive Humanoid Walking (적응적인 휴머노이드 보행을 위한 CPG 궤적 및 GP 관절 보정의 결합 기법)

  • Jo, Youngwan;Kim, Hunlee;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1551-1556
    • /
    • 2016
  • A combined CPG (Central Pattern Generator) based foot trajectory and GP (Genetic Programming) based joint compensation method is presented for the adaptive humanoid walking. The CPG based foot trajectory methods have been successfully applied to basic slops and variable slops with slow rates, but have a limitation for the steep slop terrains. In order to increase an adaptability of humanoid walking for the rough terrains, a GP based joint compensation method is proposed and combined to the CPG (Central Pattern Generator) based foot trajectory method. The experiments using humanoid robot Nao are conducted in an ODE based Webots simulation environmemt to verify a stability of walking for the various aslope terrains. The proposed method is compared to the previous CPG foot trajectory technique and shows better performances especially for the steep varied slopes.

A Method to Resolve the Cold Start Problem and Mesa Effect Using Humanoid Robots in E-Learning (휴머노이드 로봇을 활용한 이러닝 시스템에서 Mesa Effect와 Cold Start Problem 해소 방안)

  • Kim, Eunji;Park, Philip;Kwon, Ohbyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • The main goal of e-learning systems is just-in-time knowledge acquisition. Rule-based e-learning systems, however, suffer from the mesa effect and the cold start problem, which both result in low user acceptance. E-learning systems suffer a further drawback in rendering the implementation of a natural interface in humanoids difficult. To address these concerns, even exceptional questions of the learner must be answerable. This paper aims to propose a method that can understand the learner's verbal cues and then intelligently explore additional domains of knowledge based on crowd data sources such as Wikipedia and social media, ultimately allowing for better answers in real-time. A prototype system was implemented using the NAO platform.

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.