• Title/Summary/Keyword: Hyaluronate lyase

Search Result 2, Processing Time 0.017 seconds

Cloning and Biochemical Characterization of a Hyaluronate Lyase from Bacillus sp. CQMU-D

  • Lu Wang;Qianqian Liu;Xue Gong;Wenwen Jian;Yihong Cui;Qianying Jia;Jibei Zhang;Yi Zhang;Yanan Guo;He Lu;Zeng Tu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.235-241
    • /
    • 2023
  • Hyaluronidase (HAase) can enhance drug diffusion and dissipate edema by degrading hyaluronic acid (HA) in the extracellular matrix into unsaturated HA oligosaccharides in mammalian tissues. Microorganisms are recognized as valuable sources of HAase. In this study, a new hyaluronate lyase (HAaseD) from Bacillus sp. CQMU-D was expressed in Escherichia coli BL21, purified, and characterized. The results showed that HAaseD belonged to the polysaccharide lyase (PL) 8 family and had a molecular weight of 123 kDa. HAaseD could degrade chondroitin sulfate (CS) -A, CS-B, CS-C, and HA, with the highest activity toward HA. The optimum temperature and pH value of HAaseD were 40℃ and 7.0, respectively. In addition, HAaseD retained stability in an alkaline environment and displayed higher activity with appropriate concentrations of metal ions. Moreover, HAaseD was an endolytic hyaluronate lyase that could degrade HA to produce unsaturated HA oligosaccharides. Together, our findings indicate that HAaseD from Bacillus sp. CQMU-D is a new hyaluronate lyase and with excellent potential for application in industrial production.

Draft genome sequences of Vibrio splendidus KCTC 11899BP, which produces hyaluronate lyase in the presence of hyaluronic acid (히알우론산 유도하에 히알우로네이트 라이아제를 생산하는 Vibrio splendidus KCTC 11899BP균주의 유전체 서열 분석)

  • Park, Joo Woong;Lee, Sang-Eun;Shin, Woon-Seob;Kim, Kyoung Jin;Kim, Youn Uck
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.302-304
    • /
    • 2018
  • We, for the first time, isolated and identified a Vibrio splendidus KCTC 11899BP producing hyaluronate lyase from seawater. This enzyme is produced only when hyaluronic acid (HA) is added to the basal medium. Hyaluronate lyases are produced by microorganisms, which degrade the ${\beta}$-(1, 4) bond of HA to produce disaccharide. The genome of KCTC 11899BP, which consist of two circular contigs that are 3,522 kb (contig 1) long and 1,986 kb (contig 2) long respectively, as like other Vibrio sp. that contained 2 chromosomes. The genome included 4,700 predicted open reading frames, G + C content 44.12%, 137 tRNA genes, and 46 rRNA genes.