• Title/Summary/Keyword: Hybrid composite

Search Result 1,037, Processing Time 0.023 seconds

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

A Study on the Characteristics of New Type of Composite Bipolar Plate for the PEM Fuel Cell (고분자전해질 연료전지용 새로운 타입의 복합재료 분리판의 특성연구)

  • Kim, Jong-Wan;Lee, Jin-Sun;Sun, Kyung-Bok;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.180-183
    • /
    • 2009
  • Composite bipolar plates offer several advantages of low cost, light weight, and ease of manufacturing compared to traditional graphite plate. However, it is difficult to achieve both high electrical conductivity and high flexural strength. In this study, the hybrid carbons filled epoxy composite bipolar plates were fabricated to test electrical conductivity and flexural properties. Graphite powders were used as the main conducting filler and continuous carbon fiber fabrics were inserted to improve the mechanical properties of the composite. This hybrid composite showed improved in-plane electrical conductivity and flexural property. The moldability of the hybrid composite was also improved comparing to the continuous prepreg composite. This study suggested that the continuous carbon fiber inserted graphite/epoxy composites can be a potential candidate material to overcome the disadvantages of conventional graphite composite or continuous prepreg composite bipolar plates.

  • PDF

Mechanical Properties and Failure Mechanism of the Polymer Composite with 3-Dimensionally Stitched Woven Fabric

  • Lee, Geon-Woong;Park, Joong-Sik;Lee, Sang-Soo;Park, Min;Kim, Junkyung;Choe, Chul-Rim;Soonho Lim
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • The mechanical properties and failure mechanisms of through-the-thickness stitched plain weave glass fabric/polyurethane foam/epoxy composites were studied. Hybrid composites were fabricated using resin infusion process (RIP). Stitched sandwich composite increased drastically the flexural properties as compared with the unstitched fabrics. The breaking of stitching yarns was observed during the flexural test and this failure mode yielded relatively high flexural properties. Composites with stitched sandwich structure improved the mechanical properties with increasing the number of stitching yarns. From this study, it was concluded that proper combination of stitching density and types of stitching fiber is important factor for through-the-thickness stitched composite panels.

The Behavior of Tensile Fracture for Al/CFRP Hybrid Composite Material (Al/CFRP 하이브리드 복합재료의 인장파괴거동)

  • Kang, Ji-Woong;Kwon, Oh-Heon;Ryu, Jin-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • The hybrid composite materials are recently used in many field as an advanced material due to their high resistance to fracture. However, hybrid composite materials have several problems, especially delamination, compared with homogeneous materials such as an aluminum alloy, etc. In this study, we carried out the tensile test to study the tension failure appearances and tensile ultimate strength of CFRP/Al/CFRP hybrid composite materials. The CFRP material used in the experiment is a commercial material known as CU175NS in unidirectional carbon prepreg. Also Al/CFRP/Al hybrid composites with three kind length of a single edge crack were investigated for the relationship between an aluminium volume fraction and a crack length. The crack length was measured by a traveling microscope under a universal dynamic tester. Futhermore the stress intensity factor behavior was examined according to a volume fraction and an initial crack length ratio to a width.

Investigation of cure cycle for co-cured metal/composite hybrid structures without fabricating thermal residual stress (동시경화 하이브리드 금속/복합재료 구조물의 제조 잔류 열응력 제거를 위한 경화사이클에 관한 연구)

  • Kim Hak Sung;Park Sang Wook;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.83-87
    • /
    • 2004
  • In this work, the cure cycle of co-cured metal/composite structure was investigated to decrease fabricating thermal residual stresses between the metal and the composite material. DSC (Differential scanning calorimetry) experiment and static lap shear test of co-cured aluminum/composite double lap joint as well as the curvature experiment of co-cured steel/composite strip were performed to investigate the effect of curing cycle on the thermal residual stress of co-cured hybrid structures. From the experiments, it was found that post curing method after abrupt cooling of co-cured aluminum/composite hybrid structure at certain point of degree of cure during curing process could eliminate fabricating the thermal residual stresses.

  • PDF

Experimental Study on Shape Control of Smart Composite Structure with SMA actuators (SMA 작동기를 이용한 스마트 복합재 구조의 형상 제어에 관한 실험적 연구)

  • Yang Seung-Man;Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.127-130
    • /
    • 2004
  • In this paper, active shape control of composite structure actuated by shape memory alloy (SMA) wires is presented. Hybrid composite structure was established by attaching SMA actuators on the surfaces of graphite/epoxy composite beam using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperatures. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For faster and more accurate shape or deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

  • PDF

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren;Chen, Chun-Sheng;Yu, Szu-Ying
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.367-383
    • /
    • 2011
  • In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.

Optimum Design for Iso-strain Structure of Hybrid Laminated Composite (하이브리드 적층복합재료에서의 Iso-Strain 구조설계의 최적화)

  • 강선교;이경우;강태진
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.21-29
    • /
    • 2000
  • The optimum design of hybrid laminated composites for iso-strain structure has been studied by controling fiber orientations and thicknesses of each layer. Fiber orientations and thicknesses of each layer for iso-strain structure were designed. Combining the laminates of each layer of different reinforcing material, the constitutions of hybrid laminated composite for iso-strain structure were obtained. All these calculations were formed on computer systems, automatically for the hybridization. Using the data of some specific laminated composite such as glass and aramid reinforced composites, the constitutions of hybrid laminated composites for iso-strains structure were designed and verified by lamination theory. The strains of each layer of hybrid laminated composites are calculated and they turned out to be good agreements with the results obtained lamination theory.

  • PDF

A Study on the Strength of Metal-Composite Hybrid Joints (금속-복합재 하이브리드 체결부의 강도 특성 연구)

  • Jung, Jae-Woo;Song, Min-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.94-97
    • /
    • 2005
  • The strength of aluminum 7075 and carbon composite hybrid joints was studied for adhesive, bolt, and the adhesive-bolt combined joints. Several hybrid joint specimens were tested to get the failure load and modes for three types of the joints. Adhesive Cytec EA9394S was used for aluminum and carbon bonding. Failure load of the adhesive-bolt combined joint was 94 % of the sum of the failure load of the separately bonded and bolted joints. Hybrid joint also showed more stable failure behavior than the simple adhesive or bolted joint.

  • PDF

Fatigue Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 Hybrid차체 접합체결부의 피로 특성 평가)

  • Jung, Dal-Woo;Kim, Duck-Jae;Choi, Se-Hyun;Seo, Sueng-Il;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.260-263
    • /
    • 2005
  • Fatigue fracture behavior of a hybrid joint between side-panel and under-frame by riveting and adhesive bonding has been evaluated. Two kinds of joint specimens based on real geometry were fabricated for shearing test as well as bending test. Static and cyclic loadings were used for fatigue assessment. Fatigue fracture results obtained by such experiments were reflected in modifications of design parameters of the hybrid joint.

  • PDF