• Title/Summary/Keyword: Hybrid composite materials

Search Result 484, Processing Time 0.032 seconds

AE Characteristics for Fracture Mechanism of Al 7075/CFRP Hybrid Composite (Al 7075/CFRP Hybrid 복합재료의 파손특성에 대한 AE 특성 연구)

  • 이진경;이준현;송상헌;윤한기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.268-271
    • /
    • 2001
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study, AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.

  • PDF

A Study on Mechanical Strength in AI7075/CFRP Hybrid Composite (AI7075/CFRP 하이브리드 복합재료의 기계적강도 평가에 관한 연구)

  • 유재환
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.57-62
    • /
    • 1997
  • The combined structure of hybrid composite made through the bonding process of materials of different properties greatly defines its mechanical characteristics, as the results of the experiments on materials of different properties show much dissimilarity. When carbon/epoxy materials are applied to hybrid composite, the carbon materials helps to improve the mechanical properties of the hybrid composite, and the epoxy reduces its fracture strain and impact resistance. Carbon fiber which is now in general commercialization is classified as high modulus or high strength system, and its manufacturing methods are various. The study of the materials having combined structure is focused on the numerical analysis of the layers of bonding surface in materials with difference modulus. The hybrid composite made through the multilayered bonding of reinforced aluminium sheets with aramid fiber now faces the marketing phase, and especially its excellent fatigue resistance and mechanical properties promote active researches on the similar products of hybrid composite. This study aims to investigate the effects of CFRP volume ratio and fiber's orientation over the properties of mechanical strength and fatigue life of the hybrid composite, AI7075/CFRP. To carry out this study, static tensile and fatigue tests were given to some of the panels which, made through the co-cure processing in an autoclave, have different CFRP volume ratio and carbon fiber orientations.

  • PDF

On the Mechanical and Thermal Properties of Carbon/Phenolic Interply Hybrid Composite (탄소/페놀 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구)

  • 신승준;박종규;강태진;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.29-32
    • /
    • 2002
  • The mechanical and thermal properties of spun carbon fabric/continuous carbon fabric interplay hybrid composite materials have been studied. The properties of the hybrid composites are compared with those of the continuous carbon fabric/phenolic composites and spun carbon fabric /phenolic composites. Through hybridization, tensile strength and flexural strength of hybrid composites were increased by about 17%, and 10%, respectively compared with spun carbon composites. The thermal conductivity of the hybrid composite is lower approximately 4~6% along the direction parallel to the laminar plane than that of the continuous carbon/phenolic composite.

  • PDF

A Study on the Development of the Next Generation Composite Materials(Hybrid Composites with Non-Woven Tissue) (차세대 복합재료의 개발에 관한 연구(부직포 삽입형 하이브리드 복합재료))

  • ;Hiroshi Noguchi
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.195-198
    • /
    • 2001
  • To improve the properties of FRP composite materials, the hybrid prepreg with non-woven tissue (NWT) is developed. The hybrid prepreg consists of undirectional prepreg and NWT prepreg. The NWT prepreg is made by compounding the NWT and polymer resin, which is similar to the production method of FRP prepreg. The NWT has short fibers which are discretely distributed with in-plane random orientation. The stiffness and strength of NWT composites are lower than those of continuously fibrous composites. The strengthening technique and fabricating technique for the hybrid prepreg are described in this work. The mechanical characteristics of hybrid composites with NWT are discussed and compared with those of the FRP composites.

  • PDF

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF

A Study on the Pultrusion of Hybrid Composite Tube (하이브리드 복합재료 튜브의 Pultrusion 성형공정연구)

  • 성대영;김태욱;이광주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.180-183
    • /
    • 2001
  • Glass fiber reinforced plastic(CFHP) tent pole fabricated by the pultrusion process with unidirectional glass fiber is two times as heavy as aluminum tent pole owing to the low specific modulus The first objective of this research is the design the high strength and light weight tent pole compete with. the second is the develope glass fiber carbon fiber hybrid tent pole pultrusion process. the third is the evaluate the mechanical properties of the hybrid tent pole compare to these of the duralumin tent pole.

  • PDF

The Behavior of Tensile Fracture for Al/CFRP Hybrid Composite Material (Al/CFRP 하이브리드 복합재료의 인장파괴거동)

  • Kang, Ji-Woong;Kwon, Oh-Heon;Ryu, Jin-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • The hybrid composite materials are recently used in many field as an advanced material due to their high resistance to fracture. However, hybrid composite materials have several problems, especially delamination, compared with homogeneous materials such as an aluminum alloy, etc. In this study, we carried out the tensile test to study the tension failure appearances and tensile ultimate strength of CFRP/Al/CFRP hybrid composite materials. The CFRP material used in the experiment is a commercial material known as CU175NS in unidirectional carbon prepreg. Also Al/CFRP/Al hybrid composites with three kind length of a single edge crack were investigated for the relationship between an aluminium volume fraction and a crack length. The crack length was measured by a traveling microscope under a universal dynamic tester. Futhermore the stress intensity factor behavior was examined according to a volume fraction and an initial crack length ratio to a width.

A Comparative Study on the Design Techniques of Metal and Hybrid Composite Carbody Structures in Railway Vehicle System (금속재 차체와 하이브리드 복합재 차체와의 설계기술 비교 연구)

  • Shin Kwang-Bok;Jeon Seoung-Gie;Cheon Jun-Ho;Lee Seung-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.207-211
    • /
    • 2004
  • There are the marked differences between the design techniques of carbody structures made of composite materials and metal materials. The design techniques of carbody structures made of metal materials have already been guaranteed in the domestic field. But, in case of the hybrid composite carbody structures, it is the first attempt to be developed and there is no experience of the design in the railway applications. In this paper, the design techniques of hybrid composite structures were introduced and compared with that of the conventional metal carbody.

  • PDF

The Study on the Material Behavior of Hybrid Composites (Hybrid 열가소성 복합재료의 재료거동에 관한 연구)

  • 조현철;이중희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.67-70
    • /
    • 2000
  • This study was performed to investigate the material behavior of hybrid thermoplastic composites contained glass fiber and calcium carbonate. The composite was prepared with each combination ratio of calcium carbonate, and the content of glass fiber was fixed with 10% by weight. In order to investigate the material behavior for various combination ratio, tension test, flexural test, and impact test were performed. Microscopic observation were conducted to examine the fractured surface of specimen for tension test. And the material behavior of the hybrid thermoplastic composite immersed in salt water with definite time was investigated.

  • PDF

Axial crush and energy absorption characteristics of Aluminum/GERP hybrid square tube (알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성)

  • 김구현;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.168-171
    • /
    • 1999
  • For the axial crushing tests of various shape of tubes, it was reported that composite tubes need trigger mechanism to avoid brittle failure. In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tubes. Glass/Epoxy prepregs were wrapped around aluminum tube and co-cured. The failure of hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to maximum 34% in comparison with aluminum tube. Effective energy absorption is possible for inner aluminum tube because wrapped composite tube constrain the deflection of aluminum tube and reduce the folding length. The failure of hybrid composite tube was stable without trigger mechanism because inner aluminum tube could play the role of crack initiator and controller. Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure due to effective energy absorption capability, easy production, and simple application for RTM process.

  • PDF