• Title/Summary/Keyword: Hybrid excitation

Search Result 128, Processing Time 0.019 seconds

Hybrid Excitation Control of SRM Drive for Reduction of Vibration and Acoustic Noise

  • Lee, Dong-Hee;Lee, Sang-Hun;Ahn, Jin-Woo;Park, Sung-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.151-155
    • /
    • 2001
  • The simple motor construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial magnetic force when phase current is extinguished during commutation action. In this paper, a hybrid excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Drive Characteristics of SRM According to Excitation Strategy (SRM의 여자방식에 따른 운전특성)

  • Kim, Tae-Hvoung;Ahn, Tin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.455-460
    • /
    • 2005
  • A simple construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But, switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial magnetic force when phase current is extinguished during commutation action. In this paper,2 excitation method is proposed and compared to reduce vibration and acoustic noise of the switched reluctance drive. The excitation strategies considered this research are 1-phase, 2-phase and hybrid excitation method. 1-phase method is a conventional and 2-phase method is excited 2 phases simultaneously. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are compared and tested. Suggested 2-phase and hybrid strategies reduce acoustic noise because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

Characteristic Analysis of Excitation Method for Reduction of Acoustic Noise of SRM (SRM의 저소음 구동을 위한 여자방식에 따른 특성해석)

  • Kim, Tae-Hyoung;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.15-18
    • /
    • 2005
  • Switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial magnetic force when phase current is extinguished during commutation action. In this paper, some excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The excitation strategies considered in this research are 1-phase, 2-phase and hybrid excitation method. 1-phase method is a conventional and 2-phase method is excited 2 phases simultaneously. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are compared and tested. Suggested 2-phase and hybrid strategies reduce acoustic noise because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

A Performance Comparison of Excitation Strategies For a Low Noise SRM Drive

  • Lee Dong-Hee;Kim Tae-Hyoung;Ahn Jin-Woo
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.218-223
    • /
    • 2005
  • A simple construction, low cost, and a fault tolerant power electronic drive have made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive exhibits higher levels of vibration and acoustic noise than most competing drives. The main source of vibration in the switched reluctance drive is generated by the rapid change of radial magnetic force when the phase current is extinguished during commutation. In this paper, some excitation methods are proposed to reduce the vibration and acoustic noise of the switched reluctance drive. The excitation strategies considered in this research are 1-phase, 2-phase and hybrid excitation methods. The 1-phase method is the conventional approach, while in the 2-phase method, the two phases are excited simultaneously. The hybrid excitation has 2-phase excitation using a long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are compared and tested. The suggested 2-phase and hybrid strategies reduce acoustic noise because the schemes reduce the abrupt change in excitation level by using distributed and balanced excitation.

Operation Principle and Topology Structures of Axial Flux-Switching Hybrid Excitation Synchronous Machine

  • Liu, Xiping;Wang, Chen;Zheng, Aihua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The operation principle of an axial flux-switching hybrid excitation synchronous machine (AFHESM) is analyzed and its topology structures are proposed in this paper. After some comprehensive analysis of the operation principle to axial flux electrical machine, flux-switching electrical machine and hybrid excitation electrical machine, the operation principle of AFHESM is given. Combined with some typical topological structures of hybrid excitation electrical machine, some possible topological structures are proposed and some comprehensive comparisons are carried out. The analysis results show that the stator-separated AFHESM has some advantages such as less AM turns, less impact on the demagnetization of PM, less magnetic flux-leakage and higher efficiency compared to other topologies.

Reduction Characteristics of Vibration and Acoustic Noise of SRM Using Hybrid Excitation Method (하이브리드 여자방식을 이용한 SRM의 진동 소음 저감 특성)

  • Kim, Chang-Seop;O, Seok-Gyu;An, Jin-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.438-444
    • /
    • 2001
  • The simple motor construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial force when phase current is extinguished during commutation action. In this paper, a hybrid excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Vibration and Acoustics Noise Characteristic of SRM by Hybrid Excitation Method (SRM의 여자방식에 따른 진동 및 소음특성)

  • Hwang Hyung-Jin;Won Tae-Hyun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.235-238
    • /
    • 2004
  • The simple motor construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial force when phase current is extinguished during commutation action. In this paper, a hybrid excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Low Noise Characteristics of SRM Drive with Hybrid Excitation (하이브리드 여자방식 SRM의 저소음 구동특성)

  • Kim, C.S.;Oh, S.G.;Ahn, J.W.;Kim, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.53-56
    • /
    • 2001
  • The simple construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive does exhibit higher levels of vibration and acoustic noise than most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial force when phase current is extinguished by commutation action. In this paper, a hybrid excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Vibration and Noise Characteristics of SRM with Hybrid Excitation (하이브리드 여자방식 SRM의 진동.소음 저감 특성)

  • Kim, C.S.;Moon, J.W.;Oh, S.G.;Ahn, J.W.;Hwang, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.638-640
    • /
    • 2000
  • The main source of vibration in SRM drive is generated by rapid change of radial force when phase current is extinguished by commutation action. In this paper a hybrid excitation method is proposed to reduce vibration and acoustic noise of SRM. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

PM Assisted, Brushless Wound Rotor Synchronous Machine

  • Ali, Qasim;Atiq, Shahid;Lipo, Thomas A.;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.399-404
    • /
    • 2016
  • This paper presents a new permanent magnet (PM) assisted topology for a recently introduced brushless wound rotor synchronous machine (BL-WRSM) [1]. The BL-WRSM had a dual-inverter configuration for generating a composite magneto motive force (MMF) with a fundamental component and a subharmonic component. The subharmonic component of the MMF is used for brushless excitation of the rotor. In this paper, additional PMs were introduced on the rotor of the BL-WRSM, making it a hybrid BL-WRSM. We also discussed the flux weakening operation for the hybrid BL-WRSM. The hybrid BL-WRSM offered advantages for starting the machine and provided better performance under full-load conditions. The finite element method (FEM) was used to analyze the performance of the hybrid BL-WRSM, and we compared its performance with BL-WRSM. Finally, prototypes were built with and without the PM-assistance, and experiments were conducted to demonstrate their performance.