• Title/Summary/Keyword: Hybrid turbulence modeling

Search Result 18, Processing Time 0.026 seconds

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

A multiphase flow modeling of gravity currents in a rectangular channel (사각형 수로에서 중력류의 다상흐름 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.697-706
    • /
    • 2019
  • A multiphase flow modeling approach equipped with a hybrid turbulence modeling method is applied to compute the gravity currents in a rectangular channel. The present multiphase solver considers the dense fluid, the less-dense ambient fluid and the air above free surface as three phases with separate flow equations for each phase. The turbulent effect is simulated by the IDDES (improved delayed detach eddy simulation), a hybrid RANS/LES, approach which resolves the turbulent flow away from the wall in the LES mode and models the near wall flow in RANS mode on moderately fine computational meshes. The numerical results show that the present model can successfully reproduce the gravity currents in terms of the propagation speed of the current heads and the emergence of large-scale Kelvin-Helmholtz type interfacial billows and their three dimensional break down into smaller turbulent structures, even on the relatively coarse mesh for wall-modeled RANS computation with low-Reynolds number turbulence model. The present solutions reveal that the modeling approach can capture the large-scale three dimensional behaviors of gravity current head accompanied by the lobe-and-cleft instability at affordable computational resources, which is comparable to the LES results obtained on much fine meshes. It demonstrates that the multiphase modeling method using the hybrid turbulence model can be a promising engineering solver for predicting the physical behaviors of gravity currents in natural environmental configurations.

Improved version of LeMoS hybrid model for ambiguous grid densities

  • Shevchuk, I.;Kornev, N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.270-281
    • /
    • 2018
  • Application of the LeMoS hybrid (LH) URANS/LES method for the wake parameters prediction is considered. The wake fraction coefficient is calculated for inland ship model M1926 under shallow water conditions and compared to results of PIV measurements. It was shown that due to lack of the resolved turbulence at the interface between LES and RANS zones the artificial grid induced separations can occur. In order to overcome this drawback, a shielding function is introduced into LH model. The new version of the model is compared to the original one, RANS $k-{\omega}$ SST and SST-IDDES models. It is demonstrated that the proposed modification is robust and capable of wake prediction with satisfactory accuracy.

Numerical Study on Flow Field in the Cylinder of an Axisymmetric Engine (축대칭엔진 실린더 내의 유동장에 관한 수치해석적 연구)

  • 김영환;유정열;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.467-474
    • /
    • 1993
  • Viscous flow and heat transfer phenomena in an axisymmetric cylinder which models a diesel engine have been numerically studied. In order to search for a way to minimize numerical diffusion, the effectiveness and the appropriateness of two selected numerical schemes for convective terms in the governing equations have been tested. They are Linear Upwind Difference Scheme and Hybrid Scheme. Using a standard k-.epsilon. turbulence model, the calculation has been carried out basically up to 180.deg. of crank angle. As a result, it was shown from comparison with previous experimental data that Linear Upwind Difference Scheme is less influenced than Hybrid Scheme by the numerical diffusion and it was suggested that these effects of numerical diffusion can be more significant than those due to turbulence modeling.

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

Direct Numerical Simulation of Channel Flow with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1543-1551
    • /
    • 2003
  • The present study investigates turbulent flows subject to strong wall injection in a channel through a Direct Numerical Simulation technique. These flows are pertinent to internal flows inside the hybrid rocket motors. A simplified model problem where a regression process at the wall is idealized by the wall blowing has been studied to gain a better understanding of how the near-wall turbulent structures are modified. As the strength of wall blowing increases, the turbulence intensities and Reynolds shear stress increase rapidly and this is thought to result from the shear instability induced by the injected flows at the wall. Also, turbulent viscosity grows rapidly as the flow moves downstream. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling would be required to predict this type of flows accurately.

COMPUTATION OF TURBULENT NATURAL CONVECTION IN A RECTANGULAR CAVITY WITH THE FINITE-VOLUME BASED LATTICE BOLTZMANN METHOD (유한체적법을 기초한 레티스 볼쯔만 방법을 사용하여 직사각형 공동에서의 난류 자연대류 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 2011
  • A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method (LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the conservation of mass and momentum equations are resolved by the LBM is employed in the present study. The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to the prediction of a turbulent natural convection in a rectangular cavity and the computed results are compared with the experimental data commonly used for the validation of turbulence models and those by the conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts the mean velocity components and turbulent quantities which are as good as those by the conventional finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected by the treatment of the convection term, especially near the wall.

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.35-40
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convertive terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. In this paper k-$\varepsilon$ turbulence model with wall function is used to increase efficiency of computation times.

  • PDF

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF