• Title/Summary/Keyword: Hybrid welding

Search Result 203, Processing Time 0.023 seconds

Microstructure Evolution of UFG Steel Weld by Hybrid and Laser Welding (하이브리드 용접과 레이저 용접에 의한 세립강 용접부의 미세조직변화에 관한 연구)

  • Dong, H.W.;Lee, M.Y.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.58-63
    • /
    • 2010
  • A laser beam welding and an electric arc welding were combined, and the positive points of each welding method are drawn such as high speed, low thermal load, deep penetration, and high productivity. The fiber laser-MIG conjugated welding. namely the hybrid welding has been studied mainly for the automation industry of a pipeline welding. In this study, the MIG welding was combined with a fiber laser welding to make up the hybrid welding. The weld shapes, microstructures and mechanical properties for weld zones after the hybrid welding or only fiber laser welding were investigated on the 700 MPa grade Ultra Fine Grained(UFG) high strength steel. The amount of acicular ferrite in weld metals and HAZ(heat affected zone) was observed larger after hybrid welding compared with after only laser welding. The Vickers hardness of the top area of the fusion zone after fiber laser welding was higher compared with after hybrid welding.

Position welding using disk laser-GMA hybrid welding (디스크 레이저-아크 하이브리드 용접을 이용한 포지션 용접)

  • Lim, Hyun-Sik;Kim, Jung-Hak;Kim, Cheol-Hee;Kim, Jeong-Han
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1299-1306
    • /
    • 2007
  • The combination of laser beam and electric arc sharing common weld pool has widely been investigated since the late seventies, but it is beginning of the industrial uses. Recently, laser-GMA hybrid welding process showed possibility to overcome the tight gap tolerance with improved productivity. The laser-arc hybrid welding process is inherently complex because it has three kinds of process parameters: arc welding, laser welding and hybrid welding parameters. In this study, the optimum range of the process parameters were determined by high speed image analysis which could unveil the welding phenomena in laser-arc hybrid welding. The laser-arc hybrid welding was applied for position welding from the flat position to the overhead position and the welding characteristics were investigated.

  • PDF

Recent Technological Tendency of Laser/Arc Hybrid Welding (레이저/아크 하이브리드용접기술의 최신 동향)

  • Kim, Youngsik;Kil, Sangcheol
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.4-15
    • /
    • 2013
  • The laser/arc hybrid welding process is a new process combining the laser beam and the arc as welding heat source. The laser beam and arc influence and assist one another. By application of hybrid welding, synergistic effects are achievable, and disadvantage of the respective processes can be compensated. The laser-arc hybrid welding process has good potential to extend the field of applications of laser technology, and provide significant improvements in weld quality and process efficiency in manufacturing applications. This review analyses the recent advances in the fundamental understanding of hybrid welding processes using the works of the data base of Web of Science (SCI-Expanded) since the 2000 year. The research activity on the hybrid welding has been become more actively since 2006, especially in China, presenting the most research papers in the world. Since the hybrid welding process was adopted in manufacturing of the automobile in Europe in the early of 2000's, its adopting is widely expanded in the field of manufacturing of automobile, ship building, steel construction and the other various industry. The hybrid welding process is expected to advance toward higher productivity, higher precision, higher reliability through the mixing of high power and flexible fiber laser or disk laser and digitalized pulsed arc source.

LASER ARC HYBRID WELDING

  • Dilthey, Ulrich;Keller, Hanno
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.162-168
    • /
    • 2002
  • Hybrid Welding means the coupling of the energy of two different energy sources in a common process zone. This paper describes prospects in laser-arc-hybrid-welding. Different kinds of lasers ($CO_2$ laser and Nd:YAG laser) and arc processes (TIG, Plasma and GMA) are considered.

  • PDF

Position welding for internal welded specimen using laser-GMA hybrid welding (내면 용접부재의 전자세 레이저-아크 하이브리드 용접 연구)

  • Ahn, Young-Nam;Kim, Cheolhee;Kim, Jeonghan
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.54-60
    • /
    • 2015
  • Laser-arc hybrid welding has been considered as an effective pipe girth welding process since early 2000's. Tolerance for fit-up offsets such as gap and edge misalignment is one of most important requirements in pipe girth laser-arc hybrid welding, and several approaches using parameter optimization, a laser beam scanning and an arc oscillation have been tried. However the required offset tolerance has not been fully accomplished up to now and laser-arc hybrid welding has not been widely applied in pipeline construction than expected, despite of its high welding speed and deep penetration. In this study, internal welding was adopted to ensure the offset tolerance and sound back bead. The effect of welding parameters on bead shape was investigated at the flat position. Also tolerances for gap and edge misalignment were verified as 0.5 mm and 2.0 mm, respectively. The position welding trials were conducted at several welding positions from the flat to the overhead position in a downward direction. With the fixed welding speed, arc current for gas metal arc welding current and laser output power, adequate welding voltages for gas metal arc welding were suggested for each position.

A Study on the Thermal and Mechanical Characteristic of Hybrid Welded Ship Structure A-grade Steel (선체구조용 A급 강재의 하이브리드 용접에 대한 열 및 역학적 특성에 관한 연구)

  • Oh, Chong-In;Kim, Young-Pyo;Park, Ho-Kyung;Bang, Han-Sur
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.64-68
    • /
    • 2007
  • Recently, there has been considerable research in the field of application of Laser-Arc hybrid welding for superstructures, such as ship-structures, transport vehicles etc. However, the study on heat distribution and welding residual stress of hybrid weld by numerical simulation leaves much to be desired. Therefore, in this study, an optimized welding condition and numerical simulation for hybrid welding, using previous numerical analysis to calculate the heat source for hybrid welding, has been analyzed. For this purpose, fundamental welding phenomena of the hybrid process, using Laser and, is investigated. In order to calculate temperature and residual stress distribution in hybrid welds, a finite element heat source model is developed on the basis of experimental results and characteristics of temperature. Residual stress distribution in hybrid welds are understood from the result of simulation, and compared with the experimental values.

Effects of laser and arc power on the penetration depth in $CO_2$ laser-MIG hybrid welding ($CO_2$ 레이저-MIG 하이브리드 용접부 용입깊이에 미치는 레이저 및 아크 출력의 영향)

  • 홍승갑;이종봉
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.81-83
    • /
    • 2003
  • The potential advantages of the hybrid welding process are improved weld penetration, enhanced gap tolerance, control of weld metal composition, and improved weld quality in comparison to laser or arc welding. Especially, the deep penetration of hybrid welding is very attractive in welding of thick plates. In this study, therefore, the influence of arc power in hybrid welding on detailed bead dimensions at different laser power levels was investigated.

  • PDF

The Comparison of Weldability in Hybrid & Laser Welded Ship Structure A-grade Steel (조선용 A-grade 강재에 대한 하이브리드 및 레이저 용접부의 용접성 비교)

  • Oh, Chong-In;Park, Ho-Kyung;Jeong, Eun-Young;Rajesh, S.R;Bang, Han-Sur
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.193-196
    • /
    • 2006
  • Recently many research are going on in the field of application of Laser and Laser-Arc hybrid welding for superstructures such as ship-structures, transport vehicles etc. Therefore in this study an optimized welding condition and numerical simulation for hybrid welding by using previous numerical analysis which is used to calculate the heat source for Laser and Laser-Arc hybrid welding has been analyzed. For this purpose, fundamental welding phenomena of hybrid process(Laser+MIG) are determined based on the experiments. In order to calculate temperature and residual stress distribution in Laser and Laser-Arc hybrid welds, finite element heat source model is developed on the basis of experiment results and characteristics of temperature and residual stress distribution in Laser and Laser-Arc hybrid welds are understood from the result of simulation and found comparable to the experimental values.

  • PDF

Prediction and Verification of the Twist Deformation of Automotive Structure Parts after Hybrid Welding Using CAE (CAE 를 통한 하이브리드 용접 후 차체부품 변형예측 및 검증)

  • Lee, Dug-Young;Choi, Bo-Sung;Choi, Won-Ho;Ahn, Jang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • In recent years, laser-arc hybrid welding has begun to be adopted for assembly welding of automotive bodies and parts, because the hybrid welding process can weld lapped steel sheets having a larger gap than is possible with laser welding. In this paper, to predict the twist deformation by the hybrid welding when brackets are welded in B pillar of a passenger car, the residual stress using CAE is analyzed and the deformation result of CAE is compared with the measured deformation. First of all, after modeling heat source as intended to be expressed with laser-arc hybrid welding method, heat source fitting is done with welding conditions and a section of welding part obtained through specimen test. In case of heat source functions, laser used conical source and arc used double ellipsoid source. Through the local model analysis, elements which are located in the center of the model are selected. The elements are called WME(Welding Macro Element). This WME is extruded in the welding lines and welding phenomenon of complex parts is accomplished. The deformation amount after hybrid welding is got through a simulation, the validity of simulation is verified by measuring the panel and comparing with the simulation result.

The Effects of Welding Wires on the Weldabilities of API X-100 with Laser-Arc Hybrid Welidng (API X-100의 레이저-아크 하이브리드 용접성에 미치는 용접와이어의 영향)

  • Kim, Sungwook;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, API-X100 steel pipes were welded with various kinds of welding wires in the laser-arc hybrid welding process. 10kW fiber laser source was combined to MIG arc welding process. API X-100 steel of base metal was of 16.9mm thickness, and butt welding applied. After welding, full penetration weld was acquired by 1-pass welding. A root porosity and the lack of fusion was observed in some welding conditions. By the mixing the melted wire, acicular ferrite, polygonal ferrite, pro-eutectoid, aligned side plate, and bainite structures were observed at the weld metal. From the observation of hybrid weld, unmixed zone had more Ni and Cr. The unmixed zone was a 1/3 area of the weld metal. As the mechanical test of the hybrid welding, tensile test and impact test applied. From the tensile test, all of the welding except SM70S was fractured at the base metal. The result of the impact test at -30 degree C led 60J~320J of the absorbed energy. The result of the low-absorbed energy might be from the coarse equiaxed structures of the weld metal.