• 제목/요약/키워드: Hydraulic Clutch

검색결과 55건 처리시간 0.023초

자동차 수동 클러치 유압 실린더의 마찰 특성 (Friction Characteristics of an Hydraulic Cylinder for an Automotive Manual Clutch)

  • 이병수
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.32-38
    • /
    • 2006
  • A clutch hydraulic system for automotive manual transmissions transfers hydraulic pressure generated by driver's pedal manipulation to the clutch mechanism. The foot effort when the clutch pedal is pushed is different than that when the clutch is returned. The effort or load difference, called hysteresis, is caused by the friction produced between rubber seal and inner wall inside the hydraulic cylinder. This clutch pedal travel foot effort hysteresis is essential for a clutch hydraulic system design and analysis. The dynamic model for a clutch hydraulic system is developed and a simulation analysis is performed to estimate the fiction coefficient as a function of the cylinder pressure. The simulation result is then compared to the measurements obtained from a clutch hydraulic system tester to ensure the reliability of the dynamic model and the coefficients estimated. Also the estimated friction coefficients at various pressure values are compared to those reported by an independent study.

유압식 클러치 조작기구의 압력맥동저감에 대한 연구 (A Study on the Pressure Pulsation Reduction for a Hydraulic Clutch Operating System)

  • 이춘태
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.93-99
    • /
    • 2008
  • The clutch is a subcomponent of the transmission that is designed to engage and disengage power flow between the engine and the transmission. Recently, the engine power of automobile has been continuously increased because of customer's demand for the bigger one. As the engine power is increased, the vibration transmitted to the hydraulic clutch operating system has been increased. Therefore the demand for the reduction of clutch pedal vibration during the operation of the clutch system has been increased. This paper describes the pressure pulsation reduction characteristics of the damper cylinder which is applied to the hydraulic clutch operating system. And the purpose of this study is to confirm the availability of a simulation model and investigating the test results of hydraulic clutch operating system. The test results are compared with the simulation results. Therefore it may be concluded that the simulation model and test results will be very useful f3r the design of hydraulic clutch damper cylinder.

차량용 유압 클러치시스템의 댐퍼실린더 특성해석 (Characteristic Analysis of the Damper Cylinder for the Automotive Hydraulic Clutch System)

  • 이춘태
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.151-158
    • /
    • 2008
  • The clutch system is a subcomponent of the transmission that is designed to engage and disengage power flow between the engine and the transmission. Recently, the engine power of automobile has been continuously increased because of customer's demand for the bigger one. As the engine power is increased, the vibration transmitted to the hydraulic clutch operating system has been increased. Therefore the demand for the reduction of clutch pedal vibration during the operation has been increased. This paper describes the pressure pulsation reduction characteristics of the damper cylinder which is applied to the hydraulic clutch operating system. And the purpose of this study is to propose an analysis model and investigate the effect of the design variable variations for the hydraulic clutch system. Especially, we studied the effect of damper cylinder parameter variations on the hydraulic clutch system performance.

압력제어솔레노이드밸브를 이용한 직접구동 방식의 유압회로에 의한 자동변속기의 변속품질 향상에 관한 연구

  • 김정관;한명철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.505-508
    • /
    • 1995
  • This paper suggests new hydraulic circuit to control the pressure of clutches and brakes which has several advantages than conventional hydraulic circuit in automatic transmissions. In conventional hydraulic circuit, the pressures of all friction elements are controlled by only one pressure control valve and accumlators. So, controllable range is limited and it is unable to control the friction elements independently. Therefore, we can not do the fine control of timing between apply clutch and release clutch which is needed in clutch-to clutch shifting automatic transmissions. To overcome these faults, we designed the direct-acting hydraulic circuit where one pressure control valve and pressure control solenoid valve are allocated to each friction element and control that independently. Through this structural improvement of hydraulic circuit, we can achieve elaborate aontrol to clutch pressure. Specially, We can control the timing between apply clutch and release clutch delicately which is needed in clutch-to-clutch shifting.

  • PDF

소형선박 유압클러치 장치의 해양사고 예방 교육 만족도에 관한 조사 (Satisfaction Survey of Training to Prevent Marine Accidents on Hydraulic Clutch in Small Ships)

  • 김영운
    • 수산해양교육연구
    • /
    • 제26권5호
    • /
    • pp.966-978
    • /
    • 2014
  • Currently, majority small ship's clutch for power transmission to propeller relies on multi plate hydraulic clutch regardless its size. Most of the small ships do not have a spare equipments of clutch. Furthermore, many ship engineers do not have an ability as well as enough experience to solve this problem related to the hydraulic clutch during the voyage. Therefore, any small problems cause many serious marine accidents. Once the clutch has problem, almost of all ships can not sail by itself anymore and it must be towed by salvage boat, maritime police ships, or fish guidance boat etc. In this case, all the accidents will be categorized as a marine accident and they all need to go through marine accident court inquiries. In this study, an understanding of each crew on hydraulic clutch system has been profoundly measured. Furthermore, the knowledge on an emergency navigation protocol of each crew has been also profoundly checked. Additionally, various surveys on hydraulic clutch classes has been performed and its satisfaction of crews on this topic have been carefully checked based on various feedback from students who took these courses. All of the above data from this study will be used to reduce marine accidents in current marine industry.

파워시프트 변속기 유압클러치시스템의 해석적 연구 (An Analytical Investigation of a Hydraulic Clutch System of Powershift Transmission)

  • 이재천
    • 유공압시스템학회논문집
    • /
    • 제6권1호
    • /
    • pp.25-31
    • /
    • 2009
  • This study presents an analytical model of hydraulic clutch system of a power shift transmission to analyze pressure modulation characteristics. A typical hydraulic clutch system was modeled by using AMESim in which the parameters of major components were measured for simulation. Test apparatus was established using the components of power shift and power shuttle clutches with instrumental equipment. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the cylinder model analogized clutch dynamics need to be improved in future study. The effects of parameters of orifice diameter, accumulator stroke and oil temperature on pressure modulation were analyzed respectively. The results of parameter sensitivity analysis show that modulation time and set pressure can be easily adjusted by changing parameter values. It is also found that the hydraulic clutch system used in this study is so susceptible to oil temperature that cooling equipment is necessary.

  • PDF

Study on performance test of orchard tractor power transmission systems

  • Sung, Nam-Seok;Chang, Dong-Il;Huh, Yun-Kun;Chung, Sun-Ok;Cho, Jong-Seung;Ha, Jong-Kyou
    • 농업과학연구
    • /
    • 제40권3호
    • /
    • pp.237-241
    • /
    • 2013
  • This study started to export an orchard tractor to Europe under the situations that R&D activities for orchard tractor were marginal and even it was not produced. The R&D for orchard tractor has been progressed and the most of it is accomplishing the goal. In this study, the durability of clutch friction part was tested for F/R clutch and moment of inertia of PTO clutch, and it was compared with the design criteria of transmission of tractor. According to the results of inertia test of F/R clutch, hydraulic pressures of clutch satisfied $1,961.33{\pm}196.13kPa$ of design criteria, and the variations of torque for forward and reverse operation were relatively constant. Therefore, it was found that the durability of clutch friction part was stable and reliable. Test results showed that the main hydraulic pressures were maintained $1,961.33{\pm}196.13kPa$ during the tests of moment of inertia of PTO clutch, and when it was operated, the hydraulic pressures were reached $1,961.33{\pm}196.13kPa$. Therefore, it was found that the hydraulic pressures of PTO satisfied the design criteria. By the results that the time of the hydraulic pressures of PTO reaching main hydraulic pressure, and that of torque values restoring to the original was same as the time of the first gear of PTO reaching the maximum rotational speed, it was found that PTO could transfer power to attachments as it was designed.

압력제어솔레노이드밸브를 이용한 직접구동 방식의 유압회로에 의한 자동변속기의 변속품질 향상에 관한 연구

  • 김정관;한명철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 1995
  • This paper suggests direct-acting hydraulic circuit to control clutches and brakes in automatic transmission. As only one pressure control valve controls the pressure of several friction elements with accumulators in conventional hydraulic circuit, the controllable range is limited. In addition, it is difficult to control the fine timing between apply clutch and release clutch. So, we designed new method to control the pressure of clutch which uses ressure control valve and pressure control solenoid valve independently in each friction element. through this structure improvement of hydraulic circuit, we can control the pressure of clutches and brakes finely and fine timing of between apply clutch and release clutch.

  • PDF

자동차 수동 변속기 클러치 시스템의 답력 이력 특성 예측 모델 (Automotive Manual Transmission Clutch System Modeling for Foot Effort Hysteresis Characteristics Prediction)

  • 이병수
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.164-170
    • /
    • 2008
  • A typical clutch system for automotive manual transmissions transfers hydraulic pressure generated by driver's pedal manipulation to the clutch diaphragm spring. The foot effort history during the period of push is different than the period of the clutch pedal's return. The effort or load difference is called clutch foot effort hysteresis. It is known that the hysteresis is caused by friction. The frictional force and moment are produced between various component contact points such as between the rubber seal and the inner wall inside the hydraulic cylinder and between the diaphragm spring and the pressure plate, etc. Understanding the clutch pedal foot effort hysteresis is essential for a clutch release system design and analysis. The dynamic model for a clutch release system is developed for the foot effort hysteresis prediction and a simulation analysis is performed to propose a tool for analysing a clutch system.

지게차 자동변속기의 클러치 직접 제어 유압 시스템 모델링 및 해석 (The Hydraulic System Modeling and Analysis of the Clutch Direct Control of an Automatic Transmission for a Forklift Truck)

  • 오주영;이근호;송창섭
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.112-119
    • /
    • 2009
  • An automatic transmission of construction equipment is controlled by hydraulic and electronic system for doing in various functions like as shifting and operation. The shifting is operated by the engaged and disengaged clutch motion from hydraulic power. On the shifting process, suitable pressure control to the clutch is required for smooth shifting. Hydraulic control system in the automatic transmission is divided by the pilot control type and the direct control type greatly. The direct control type has an advantage than the pilot control type. Because the structure is simple, the design and the manufacture are having less troubles and the system can be maximized precision pressure control. However, the excellent performance proportional control valve should be used to achieve proper control-ability. In this study, the dynamic analysis model composing the automatic transmission and hydraulic system for forklift truck is presented to simulate the characteristics of hydraulic system about the direct control type. That model is verified the validity compared the results of the testing examination. Parameters of input signal are analyzed to reduce the output torque according to input control signal is affected in shifting characteristic.