• Title/Summary/Keyword: Hydrodynamic Motion

Search Result 482, Processing Time 0.024 seconds

Numerical study of Double Hydrofoil motions for thrust and propulsive efficiency (추력 및 효율 향상을 위한 Double Hydrofoil 움직임에 대한 수치해석 연구)

  • Kim, Sue-Jin;Han, Jun-Hee;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.59-70
    • /
    • 2014
  • The motion of birds and insects have been studied and applied to MAV(Micro Air Vehicle) and AUV(Autonomous Underwater Vehicle). Most of AUV research is focused on shape and motion of single hydrofoil. However, double hydrofoil system is mostly used in real physics. This system shows completely different hydrodynamic characteristic to single hydrofoil because of wake interaction. The goal of this study is define the trajectory of wake interaction in double hydrofoil system. Moreover, trust and efficiency of various combined motion will be demonstrated. Symmetry airfoil is used for analysis an hydrodynamic characteristic. Forward wing's plunging and pitching motion is fixed, hide wing's Heaving ratio, Pitch phase shift from forward plunging and Heaving shift is changed. This study provide necessary basic data of motion optimization for double hydrofoil system.

On the Motion Characteristics of a Freely-Floating Sphere in a Water of Finite Depth (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)의 운동특성(運動特性))

  • Hang-Shoon,Choi;Sung-Kyun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 1982
  • Herein the motion of a freely-floating sphere in a water of finite depth is analysed within the framework of a linear potential theory. A velocity potential describing fluid motion is generated by distributing pulsating sources and dipoles on the immersed surface of the sphere, without introducing an inner flow model. The potential becomes the solution of an integral equation of Fredholm's second type. In the light of the vertical axisymmetry of the flow, surface integrals reduce to line integrals, which are approximated by summation of the products of the integrand and the length of segments along the contour. Following this computational scheme the diffraction potential and the radiation potential are determined from the same algorithm of solving a set of simultaneous linear equations. Upon knowing values of the potentials hydrodynamic forces such as added mass, hydrodynamic damping and wave exciting forces are evaluated by the integrating pressure over the immersed surface of the sphere. It is found in the case of finite water depth that the hydrodynamic forces are much different from the corresponding ones in deep water. Accordingly motion response of the sphere in a water of finite depth displays a particular behavior both in a amplitude and phase.

  • PDF

A RANS-based Simulation for the Prediction of Hydrodynamic Rolling Moments around Rectangular Cylinders with Free Surface (자유수면을 포함한 사각기둥의 횡동요 유체동역학 수치해석)

  • Kim, Su-Whan;Kim, Kwang-Soo;Park, Il-Ryong;Van, Suak-Ho;Kim, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.667-674
    • /
    • 2006
  • Accurate prediction of ship dynamics, particularly roll motion, is very important in ship safety. In the past, empirical or vortex based methods were commonly used for the hydrodynamic roll damping predictions but they could not be applied to practical ship roll motion cause of limitations about geometries ad design conditions. Recently RANS-based techniques are developed for the practical ship motion analysis. In this study, RANS based roil analysis about a rectangular cylinder with WAVIS developed by MOERI/KORDI are performed and compared with the experimental data and other RANS results.

Comparative Study on the Radiation Techniques for the Problem of Floating Body Motion with Forward Speed (전진 속도를 가지는 부유체 운동 문제에 대한 방사기법 비교 연구)

  • Oh, Seunghoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.396-409
    • /
    • 2019
  • In this paper, a comparative study on the radiation techniques for the motion analysis of the three dimensional floating structure with the forward speed was carried out. The Sommerfeld radiation condition, the damping technique, and the point shift technique were used for the comparative study. Radiated wave patterns and hydrodynamic coefficients of the heave motion of floating structure with the forward speed were compared and analyzed. The characteristics and limitations of each radiation technique were analyzed through the calculation results. To overcome the limitations of conventional radiation techniques, the hybrid radiation technique combining the Sommerfeld radiation condition with the damping technique was proposed. It is confirmed that the proposed method, the Hybrid radiation technique, improves the limitation of the speed range and the dissipation of the wave of the conventional radiation technique. The motion analysis code of the three dimensional floating structure with the forward speed based on the Rankine source method with hybrid radiation technique was developed. In order to validate the developed code, hydrodynamic analyses were carried and compared with published experiments.

Prediction Method for Linear Maneuvering Hydrodynamic Derivatives Using Slender Body Theory Based on RANS (RANS 기반의 세장체 이론을 이용한 선형 조종 유체력 미계수 추정에 관한 연구)

  • Lee, Sungwook
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.340-345
    • /
    • 2017
  • It is important to predict the hydrodynamic maneuvering derivatives, which consist of the forces and moment acting on a hull during a maneuvering motion, when estimating the maneuverability of a ship. The estimation of the maneuverability of a ship with a change in the stern hull form is often performed at the initial design stage. In this situation, a method that can reflect the change in the hull form is necessary in the prediction of the maneuverability of the ship. In particular, the linear hydrodynamics maneuvering derivatives affect the yaw checking motion as the key factors. In the present study, static drift calculations were performed using Computational Fluid Dynamics (CFD) based on Reynolds Average Navier-Stokes (RANS) for a 40-segment hull. A prediction method for the linear hydrodynamic maneuvering derivatives was proposed using the slender body theory from the distribution of the lateral force acting on each segment of the hull. Moreover, the results of a comparison study to the model experiment for KVLCC1 performed by KRISO are presented in order to verify the accuracy of the static drift calculation. Finally, the linear hydrodynamic maneuvering derivatives obtained from both the model test and calculation are compared and presented to verity the usefulness of the method proposed in this study.

Horizontal hydrodynamic coupling between shuttle tanker and FPSO arranged side-by-side

  • Wang, Hong-Chao;Wang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.275-294
    • /
    • 2013
  • Side-by-side offloading operations are widely utilized in engineering practice. The hydrodynamic interactions between two vessels play a crucial role in safe operation. This study focuses on the coupled effects between two floating bodies positioned side-by-side as a shuttle tanker-FPSO (floating production, storage and offloading) system. Several wave directions with different side-by-side distances are studied in order to obtain the variation tendency of the horizontal hydrodynamic coefficients, motion responses and mean drift forces. It is obtained that the coupled hydrodynamics between two vessels is evidently distinguished from the single body case with shielding and exaggerating effects, especially for sway and yaw directions. The resonance frequency and the peak amplitude are closely related with side-by-side separation distance. In addition, the horizontal hydrodynamics of the shuttle tanker is more susceptible to coupled effects in beam waves. It is suggested to expand the gap distance reasonably in order to reduce the coupled drift forces effectively. Attention should also be paid to the second peaks caused by hydrodynamic coupling. Since the horizontal mean drift forces are the most mainly concerned forces to be counteracted in dynamic positioning (DP) system and mooring system, prudent prediction is beneficial in saving consumed power of DP system and reducing tension of mooring lines.

Hydrodynamic Responses of Spar Hull with Single and Double Heave Plates in Random Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Heave plates have been widely used to enhance viscous damping and thus reduces the heave response of Spar platforms. Single heave plate attached to the keel of the Spar has been reported in literature (Tao and Cai 2004). The effect of double heave plates on hydrodynamic response in random waves has been investigated in this study. The influence of relative spacing $L_d/D_d$ ($D_d$-the diameter of the heave plate) on the hydrodynamic response in random waves has been simulated in wave basin experiments and numerical model. The experimental investigation has been carried out using 1:100 scale model of Spar with double heave plates in random waves for different relative spacing and varying wave period. The influence of relative spacing between the heave plates on the motion responses of Spar are evaluated and presented. Numerical investigation has been carried out to investigate effect of relative spacing on hydrodynamic characteristics such as heave added mass and hydrodynamic responses. The measured results were compared with those obtained from numerical simulation and found to be in good agreement. Experimental and numerical simulation shows that the damping coefficient and added mass does not increase for relative spacing of 0.4 and the effect greater than relative spacing on significant heave response is insignificant.

Study on hydrodynamic performance of Heavier-than-water AUV with overlapping grid method

  • Li, Xiang;Zhao, Min;Zhao, Faming;Yuan, Qingqing;Ge, Tong
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Hydrodynamic coefficients strongly affect the dynamic performance of autonomous underwater vehicles (AUVs). A novel kind of underwater vehicle (Heavier-than-water AUV) with higher density than water is presented, which is different from conventional ones. RANS method and overlapping grids are used to simulate the flow field around the vehicle. Lifts, drags and moments of different attack and drift angles in steady state are calculated. The hydrodynamic performances and how the forces change with the attitude are analyzed according to the flow field structure. The steady-state results using overlapping grid method are compared with those of software FLUENT and wind tunnel tests. The calculation results show that the overlapping grid method can well simulate the viscous flow field around the underwater vehicle. Overlapping grid skills have also been used to figure out the planar-motion-mechanism (PMM) problem of Heavier-than-water AUV and forecast its hydrodynamic performance, verifying its effectiveness in dealing with the dynamic problems, which would be quite helpful for design and control of Heavier-than-water AUV and other underwater vehicles.

A Study on the Hydrodynamic Force Acting on a Large Vessel in the Proximity of Breakwater (방파제 형상 연직구조물 부근을 항행하는 대형선박에 미치는 간섭력에 관한 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.345-350
    • /
    • 2013
  • It is well known that the hydrodynamic forces and moments induced by the proximity of bank in confined waters, such as in a harbour or narrow channel affect ship's maneuvering motion. In this paper, the calculation method based on the slender body theory for estimation of the hydrodynamic force between ship and breakwater is applied, and also, the characteristic features of hydrodynamic force acting on a large vessel in the proximity of a breakwater are described and illustrated. Furthermore, the effects of water depth and the lateral spacing between ship and breakwater are summarized and discussed.

Estimation of Hydrodynamic Derivatives and Dynamic Stability for Submarine Using Captive Model Test (구속모형시험을 이용한 잠수함의 동유체력 계수 추정 및 동안정성 평가)

  • Jeong, Jae-Hun;Ok, Ji-Hun;Lee, Chi-Seung;Lee, Jae-Myung;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.173-178
    • /
    • 2015
  • In these days, the world has been increasing the development of various underwater vehicles such as ROVs (Remotely operated underwater vehicles) and AUVs (Autonomous underwater vehicles). And the importance of submarine's maneuverability is especially being emphasized. Therefore, accurate values of the derivatives in equations of motion are required to control motion of the submarines. The aims of the present study are to experimentally derive Hydrodynamic derivatives derived by the vertical planar motion mechanism (VPMM) model test, and to estimate vertical dynamic stability was estimated by using the linear hydrodynamic derivatives, the hydrodynamic derivatives of the submarine, which have a high propriety, were provided by using the fourier analysis of measured forces and moments. Furthermore it is confirmed that the experimental derivatives shows well agreement with the theoretical estimations, and the dynamic stability of the submarine was estimated as a good state, which implies that the value is greater than zero.