• Title/Summary/Keyword: Hydrodynamic coefficients

Search Result 286, Processing Time 0.028 seconds

Study on the hydrodynamic coefficients of the nettings (망지의 유체역학적 계수에 관한 연구)

  • Song, Dae-Ho;Lee, Chun-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.1
    • /
    • pp.34-45
    • /
    • 2009
  • In this study, the hydrodynamic coefficients were measured using various nettings to analyze the change of drag coefficients and lift coefficients as a basic study for deriving hydrodynamic coefficients. The data on hydrodynamic force obtained from the flume tank tests were used to compare and analyze the hydrodynamic coefficients based on Reynolds number. Standardized hydrodynamic coefficients were then assumed during the analysis procedures. The hydrodynamic coefficients were measured using the 9 kinds of nettings in which had the same total projected area with different diameters and mesh-grouping ratio. These different netting systems : mesh-grouping ratio. The results of the test of nettings were as follows; First, the drag coefficients of nettings increased when the higher attack angles applied, and decreased with the increased flow speed and netting twine diameter. Second, the lift coefficients of nettings showed the increased values until the attack angle 30 degree, but decreased for the attack angle over 40 degree. Third, the hydrodynamic coefficients of netting decreased as the Reynolds number increased, and reach at slightly states in the highest numbers. Fourth, the hydrodynamic coefficients were derived from a functional formula considering attack angles and Reynolds number, and presented in the three dimensional space.

Tune of Hydrodynamic Coefficients Based on Empirical Formula by Using Manoeuvring Performance Indices of a Ship (선박 조종성능지수를 활용한 경험식 기반 유체력 미계수의 보정)

  • Kim, Dong Jin;Kim, Yeon Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.331-344
    • /
    • 2020
  • Ship's hydrodynamic coefficients in manoeuvring equations are generally derived by captive model tests or numerical calculations. Empirical formulas have been also proposed in some previous researches, which were useful for practical predictions of hydrodynamic coefficients of a ship by using main dimensions only. In this study, ship's hydrodynamic coefficients based on empirical formulas were optimized by using its free running test data. Eight manoeuvring performance indices including steady turning radius, reach in zig-zag as well as well-known IMO criteria indices are selected in order to compare simulation results with free runs effectively. Sensitivities of hydrodynamic coefficients on manoeuvring performance indices are analyzed. And hydrodynamic coefficients are tuned within fixed bounds in order of sensitivity so that they are tuned as little as possible. Linear and nonlinear coefficients are successively tuned by using zig-zag and turning performance indices. Trajectories and velocity components by simulations with tuned hydrodynamic coefficients are in good agreements with free running tests. Tuned coefficients are also compared with coefficients by captive model tests or RANS calculations in other previous researches, and the magnitudes and signs of tunes are discussed.

Estimating Hydrodynamic Coefficients of Real Ships Using AIS Data and Support Vector Regression

  • Hoang Thien Vu;Jongyeol Park;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.198-204
    • /
    • 2023
  • In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.

A study on the system identification technique for hydrodynamic coefficient estimation of underwater submersible (수중운동체의 유체계수 추정을 위한 시스템 식별기법 연구)

  • 양승윤;최중락;김흥렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.772-775
    • /
    • 1992
  • It is necessary to estimate hydrodynamic coefficients to design the auto-pilot system and motion simulator of submersible vehicle. In this paper, an algorithm was designed to estimate hydrodynamic coefficients of submersible vehicle. Using this algorithm, the hydrodynamic coefficients were estimated from measurements of full scale trial. The estimated hydrodynamic coefficients were used for the design of an auto-depth controller(ADC) of submersible vehicle, and the resulting ADC are proved to have a better performance than the previous one.

  • PDF

Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method

  • Mai, Thi Loan;Nguyen, Tien Thua;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.53-64
    • /
    • 2020
  • This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.

Estimation of Hydrodynamic Coefficients for AUV-SNUUV I (AW-SNUUV I의 동유체력 계수 추정)

  • Kim Kihun;Kim Joonyoung;Shin Minseop;Choi Hang S.;Seong Woojae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.201-204
    • /
    • 2002
  • This paper describes the hydrodynamic characteristics of a test-bed AUV SNUUV-I constructed at Seoul National University. The main purpose of the AUV is to carry out fundamental control and hydrodynamic experiments. Its configuration is basically a long cylinder of 1.35m in length and 0.25m in diameter with delta-type wings near its rear end. On the edge of each wing, a thruster of 1/4HP is mounted, which is used for both drive and turn the vehicle for horizontal movement as the output control power is varied. A pair of control surfaces installed near its font part generates pitch moments for vertical movement. The 6 DOF mathematical model of SNUUV-I contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients. These coefficients can be classified into linear damping coefficients, linear inertial coefficients and nonlinear damping coefficients. It is important to estimate the exact value of these coefficients to control the vehicle precisely. Among these, the linear coefficients are known to affect the motion of the vehicle dominantly. The linear damping coefficients are estimated by using Extended Kalman Filter. The responses of the vehicle to input signals are used to estimate the hydrodynamic coefficients, which can be inferred from output signals measured from an IMU (inertial motion unit) sensor, while the linear inertial coefficients are calculated by a potential code. By using these coefficients estimated as described above, a simulation program is constructed using Matlab.

  • PDF

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai;Zhou, Zexing;Li, Hongwei;Zhou, Hao;Xu, Yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

A Comparison of Optimization Algorithms: An Assessment of Hydrodynamic Coefficients

  • Kim, Daewon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.295-301
    • /
    • 2018
  • This study compares optimization algorithms for efficient estimations of ship's hydrodynamic coefficients. Two constrained algorithms, the interior point and the sequential quadratic programming, are compared for the estimation. Mathematical optimization is designed to get optimal hydrodynamic coefficients for modelling a ship, and benchmark data are collected from sea trials of a training ship. A calibration for environmental influence and a sensitivity analysis for efficiency are carried out prior to implementing the optimization. The optimization is composed of three steps considering correlation between coefficients and manoeuvre characteristics. Manoeuvre characteristics of simulation results for both sets of optimized coefficients are close to each other, and they are also fit to the benchmark data. However, this similarity interferes with the comparison, and it is supposed that optimization conditions, such as designed variables and constraints, are not sufficient to compare them strictly. An enhanced optimization with additional sea trial measurement data should be carried out in future studies.

Estimation of Maneuvering Mathematical Model by System Identification Techniques (시스템 검증에 의한 조종수학 모형의 평가)

  • Lee, Ho-Young;Shin, Hyun-Kyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.118-123
    • /
    • 1999
  • The mathematical model used in the simulation of ship's maneuvering contains the hydrodynamic coefficients, which are usually evaluated based on PMM model tests in the towing tank and used to predict ship's maneuvering performance when applied to the proto-type ship. The proper mathematical model has to be developed to predict ship's maneuvering motions with hydrodynamic coefficients very well. The mathematical model for PMM model tests is analyzed with identification program and the hydrodynamic coefficients and maneuvering motions by system identification we compared with those obtained directly from PMM model tests and sea trial. The mathematical model for PMM model tests was established and the magnitudes of ship's maneuvering coefficients were determined. When the identified values of coefficients were used to simulate the maneuvers, a very good agreement was obtained between the numerically simulated motion responses and those obtained from PMM model tests.

  • PDF

Controller Design for an Autonomous Underwater Vehicle Using Estimated Hydrodynamic Coefficients

  • Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.7-17
    • /
    • 2006
  • Depth and heading control of an AUV are considered to follow the predetermined depth and heading angle. The proposed control algorithm is designed. based on a sliding mode control using estimated hydrodynamic coefficients. The hydrodynamic coefficients are estimated with conventional nonlinear observer techniques, such as sliding mode observer and extended Kalman filter. By using the estimated coefficients, a sliding mode controller is constructed for the combined diving and steering maneuver. The simulation results of the proposed control system are compared with those of control system with true coefficients. This paper demonstrates the proposed control system, discusses the mechanisms that make the system stable and follows the desired depth and heading angle, accurately, in the presence of parameter uncertainty.