• Title/Summary/Keyword: Hydrogen release

Search Result 247, Processing Time 0.022 seconds

Thermal Decomposition of Ammonia Borane for $H_2$ Release (수소 발생을 위한 암모니아 보레인의 열분해)

  • Lee, Ji-Hong;Lee, Hyun-Joo;Ahn, Byoung-Sung;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • Thermal decomposition of Ammonia Borane have been investigated with various analytical methods including TGA, TP-MS, DSC. By-products such as aminoborane and borazine were identified during hydrogen release by TGA, TP-MS analysis. $H_2$ release amount was measured at each temperature isothermally, which resulted in 7 wt% $H_2$ release at 130$^{\circ}C$. Moreover, higher temperature enhanced hydrogen release kinetics leading to shortened induction period from 20 min at 95$^{\circ}C$ to 0 min at 130$^{\circ}C$. Melting and decomposition at close temperature (4$^{\circ}C$ difference) caused the formation of thin foam during hydrogen release. Suppression of by-products and thin foam formation during hydrogen release is suggested as critical issues to realize chemical hydrogen storage system with ammonia borane.

Hazard Distance from Hydrogen Accidents (수소가스사고의 피해범위)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • An analysis was completed of the hazards distance of hydrogen accidents such as jet release, jet fire, and vapor cloud explosion(VCE) of hydrogen gas, and simplified equations have been proposed to predict the hazard distances to set up safety distance by the gas dispersion, fire, and explosion following hydrogen gas release. For a small release rate of hydrogen gas, such as from a pine-hole, the hazard distance from jet dispersion is longer than that from jet fire. The hazard distance is directly proportional to the pressure raised to a half power and to the diameter of hole and up to several tens meters. For a large release rate, such as from full bore rupture of a pipeline or a large hole of storage vessel, the hazard distance from a large jet fire is longer than that from unconfined vapor cloud explosion. The hazard distance from the fire may be up to several hundred meters. Hydrogen filling station in urban area is difficult to compliance with the safety distance criterion, if the accident scenario of large hydrogen gas release is basis for setting up the safety distance, which is minimum separation distance between the station and building. Therefore, the accident of large hydrogen gas release must be prevented by using safety devices and the safety distance may be set based on the small release rate of hydrogen gas. But if there are any possibility of large release, populated building, such as school, hospital etc, should be separated several hundred meters.

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Choi, Eunho;Kwak, Young Jun;Song, Myoung Youp
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1403-1411
    • /
    • 2018
  • Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN=2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN=3 at 593 K in 12 bar $H_2$. At CN=1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

Analyzing Effective Factors on Hydrogen Release Based on Response Surface Method and Analysis of Variance (반응표면법과 ANOVA 기반의 수소 누출에 대한 유효인자 분석)

  • JUNSEO LEE;SEHYEON OH;SEUNGHYO AN;EUNHEE KIM;BYUNGCHOL MA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.712-721
    • /
    • 2023
  • While hydrogen is widely used, it has a low minimum ignition energy, raising safety concerns when using it. This research studied which parameters are the key variables in the hydrogen release and diffusion. These parameters were divided into six process variables in the initial release and two environmental variables in the dispersion. One hundred and twenty cases were selected through design of experiment, and the end-point in each case were analyzed using PHAST. Afterwards, an end-point prediction model was developed using RSM and ANOVA, and the impact of each variable on the endpoint was analyzed. As a result, the influence of eight variables was graded. The nozzle diameter had the greatest influence on the end-point, while the pipe roughness coefficient had no effect on the end-point. It is expected that these results will be used as basic data to improve safety across all fields of hydrogen handling facilities.

Degassing of Aluminum and Aluminum Alloy Powders as Studied by Gas Chromatography

  • Watanabe, Ryuzo;Choi, Duk-Sun;Kawasaki, Akira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.716-717
    • /
    • 2006
  • Gas release behavior from aluminum and Al 7075 alloy powders during heating in argon was investigated by in-situ gas chromatography. Water vapor, hydrogen, carbon mono-oxide were detected as individual evolution spectra against heating temperature and time. The mechanisms of water and hydrogen evolutions were studied in detail for the determination of effective degassing condition. Magnesium in the alloy powder was found to lower the hydrogen evolution temperature to enhance overall hydrogen release.

  • PDF

Effects of Taeumin Chungsimyeunjatang on the Cerebral neurons injured by Hydrogen Peroxide (태음인(太陰人) 청심연자탕(淸心蓮子湯)이 Hydrogen Peroxide에 손상(損傷)된 백서(白鼠)의 대뇌신경세포(大腦神經細胞)에 미치는 영향(影響))

  • Ok, Yun-young;Ryu, Do-gon;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.251-266
    • /
    • 1999
  • 1. Purpose : The purpose of this study was to determine the effects of Chungsimyeunjatang on the cerebral neurons injured by hydrogen peroxide($H_2O_2$). 2. Methods : I observed cell viability in mouse cerebral neurons exposed to hydrogen peroxide by NR assay and MTT assay and determined lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide. After administration of Chungsimyeunjatang water extracts, I observed significant changes of cell viability, lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide. 3. Results : Hydrogen peroxide showed neurotoxicity. Cell viability in mouse cerebral neurons exposed to hydrogen peroxide decreased in NR assay and MTT assay. Lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide increased. Chungsimyeunjatang was very effective in blocking hydrogen peroxide-induced neurotoxicity.

  • PDF

Non-aqueous Zinc(Zn) Plating to Prevent Hydrogen Release from Test Specimens in Hydrogen Embrittlement Test (수소 취성 시험 평가를 위한 수소 방출 방지용 비수계 아연(Zn) 도금)

  • Jeon, Jun-Hyuck;Jang, JongKwan
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.21-26
    • /
    • 2022
  • Zinc is emerging as a environment-friendly plating material to replace cadmium, which is harmful to the human body, to prevent hydrogen gas penetration or release from metal materials. Electroplating of Zn and Zn alloys, which is usually performed in an aqueous acidic atmosphere, has disadvantages such as low coulombic efficiency, corrosion, and hydrogen release, resulting in industrial use difficult. In this study, a deep-eutectic solvent was synthesized using choline chloride and ethylene glycol. Using this as a solvent, an electrolyte for Zn plating was prepared, and then zinc was plated on the STS 304 substrate. The surface microstructure and roughness were observed using SEM and AFM. The crystal structure of the electro-plated film was analyzed using XRD. Finally, the preventing effects of hydrogen release through Zn-based deep-eutectic plating on the STS 304 substrate were compared with the uncoated substrate.

Redox reaction of Fe-based oxide mediums for hydrogen storage and release: cooperative effects of Rh, Ce and Zr additives (수소 저장 및 방출을 위한 Fe 계 산화물 매체의 환원-산화 반응: Rh, Ce 및 Zr 첨가제의 협동 효과)

  • Lee, Dong-Hee;Park, Chu-Sik;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.189-198
    • /
    • 2008
  • Cooperative effects of Rh, Ce and Zr added to Fe-based oxide mediums were investigated using temperature programmed redox reaction (TPR/TPO) and isothermal redox reaction in the view point of hydrogen storage and release. As the results of TPR/TPO, Rh was a sale additive to remarkably promote the redox reaction on the medium as evidenced by the lower highest peak temperature, even though its addition was to accelerate deactivation of the mediums due to sintering. On the other hand, Ce and Zr additives played an important role to suppress deactivation of the medium in repeated redox cycles. The medium co-added by Rh, Ce and Zr (FRCZ) exhibited synergistic performance in the repeated isothermal redox reaction, and the amount of hydrogen produced in the water splitting step at 623 K was highly maintained at ca. $17\;mmol{\cdot}g^{-1}-Fe$ during three repeated redox cycles.

A Study on the Characteristics of Injection and Combustion with Directly Injected Hydrogen Fuel (직접분사식 수소연료의 분무 및 연소특성에 관한 연구)

  • Lee, Seang-Wock;Kee, Wan-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.24-29
    • /
    • 2007
  • This study aims to provide a fundamental data for directly injected hydrogen fuel engines. Spray, ignition and combustion characteristics of hydrogen were studied using constant volume chamber. For spray visualization, hydrogen was vertically injected into a combustion chamber at various condition, for example, injection pressure, ambient pressure. And an argon laser was used for the shadowgraph photography by applying optical method. Also, to investigate heat-release rate and flame propagations, spark was ignited on hydrogen injected at the different time after injection and the duration of injection was also changed. Processes of ignition and combustion were analyzed by heat-release rate calculated by pressure history and were observed by shadowgraph photography The results gave much knowledge of spray, ignition and combustion characteristics of hydrogen.

A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility (수소생산시설에서의 수소폭발의 안전성평가 방법론 연구)

  • Jae, Moo-Sung;Jun, Gun-Hyo;Lee, Hyun-Woo;Lee, Won-Jae;Han, Seok-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In that case of hydrogen release, there lies a danger of explosion. However, from the point of thermal-hydraulics view, the long distance of them makes lower efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy are researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor are evaluated and classified by detonation volume and distance. Also based on standard safety criteria which is value of $1{\times}10^{-6}$, safety distance between the very high temperature gas cooled reactor and the hydrogen production facility is calculated.