• Title/Summary/Keyword: Hydrogen sensor

Search Result 272, Processing Time 0.023 seconds

Hydrogen Sensor Based on Palladium-Attached Fiber Bragg Grating

  • Lee, Sang-Mae;Sirkis, Jim-S.
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.69-73
    • /
    • 1999
  • This paper demonstrated the performance of a palladium wire hydrogen sensor based on a fiber Bragg grating as a means of developing a quasi-distributed hydrogen sensor network capable of operating at cryogenic temperatures. The new approach employing a fiber Bragg grating based palladium hydrogen sensor described in this study is advantageous over other traditional hydrogen sensors because of the multiplexing capability of fiber Bragg gratings. The sensitivity of the hydrogen sensor at room temperature is approximately 2.5 times that of the hydrogen sensor at cryogenic temperatures.

Implantation of portable hydrogen alarm system based on palladium coated single mode optical fiber sensor (팔라듐이 코팅된 단일모드 광섬유 센서를 이용한 수소 경보 시스템 구현)

  • Mun, Nam-Il;Yang, Byung-Cheol;Kim, Kwang-Taek;Kim, Tae-Un
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.269-273
    • /
    • 2009
  • In this paper, a study on a portable hydrogen alarm system based on the palladium coated single mode fiber sensor has been reported. The fabricated hydrogen sensor exhibited 0.14 dB, 0.41 dB and 0.54 dB optical intensity variation when it was exposed by the nitrogen and hydrogen mixed gas containing 0.5 %, 1 % and 4 % of the hydrogen concentration, respectively. The fabricated sensor exhibited 20 second of response time and 120 second of recovery time for 4 % hydrogen containing gas. The fiber optics layout and software algorithm for detection of hydrogen leakage have been presented. The implanted portable hydrogen alarm system successfully generated an alarm signal when a 4 % hydrogen containing gas was leaked out.

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

A experimental study on the sensor response at hydrogen leakage in a residential fuel cell system (가정용 연료전지 시스템 내부 수소 누출 시 센서 응답 특성에 관한 연구)

  • Kim, Young-Doo;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2009-2014
    • /
    • 2007
  • Hydrogen is a fuel of fuel cell system, which has powerful explosion possibility. Hence, the fuel cell system needs safety evaluation to prevent risk of hydrogen leakage. We use a actual size chamber of a common fuel cell module to analyze hydrogen. Hydrogen injection holes are located in lower part of the chamber in order to simulated hydrogen leakage. The hydrogen sensor can detect range of 0${\sim}$4%. Since the hydrogen gas, of which leaked amount is controled by MFC, are injected at the bottom holes, the transient sensor signals are measured. At a condition of 10cc/s of hydrogen leakage, the sensor detects hydrogen leakage after 22sec and there is also several seconds of time delay depending on the position of the sensor. This experimental data can be applied for the design of the hydrogen detection system and ventilation system of a residential fuel cell system.

  • PDF

Development of Optical Fiber Hydrogen Sensor Based on Polarization-Diversity Loop Configuration Using Pd-Coated Polarization-Maintaining Fiber (팔라듐 코팅된 편광 유지 광섬유를 이용한 편광 상이 배치 구조 기반 광섬유 수소 센서의 개발)

  • Noh, Tae-Kyu;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, we propose a fiber-optic hydrogen sensor using a polarization-diversity loop configuration composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness is ~400nm. One transmission dip of the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with the increase of the hydrogen concentration, and the sensing indicator showed a wavelength shift of ~2.48nm at a hydrogen concentration of 4%. Except for a hydrogen concentration of 4%, the response time of the proposed sensor was measured as less than 12.5s and did not show significant dependence on the hydrogen concentration. In particular, the proposed fiber hydrogen sensor is more durable and highly resistant to external stress applied on a transverse axis of an optical fiber, compared with other hydrogen sensors based on side-polished fibers or fiber gratings.

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing (3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

An electrochemical hydrogen peroxide sensor for applications in nuclear industry

  • Park, Junghwan;Kim, Jong Woo;Kim, Hyunjin;Yoon, Wonhyuck
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.142-147
    • /
    • 2021
  • Hydrogen peroxide is a radiolysis product of water formed under gamma-irradiation; therefore, its reliable detection is crucial in the nuclear industry for spent fuel management and coolant chemistry. This study proposes an electrochemical sensor for hydrogen peroxide detection. Cysteamine (CYST), gold nanoparticles (GNPs), and horseradish peroxidase (HRP) were used in the modification of a gold electrode for fabricating Au/CYST/GNP/HRP sensor. Each modification step of the electrode was investigated through electrochemical and physical methods. The sensor exhibited strong sensitivity and stability for the detection and measurement of hydrogen peroxide with a linear range of 1-9 mM. In addition, the Michaelis-Menten kinetic equation was applied to predict the reaction curve, and a quantitative method to define the dynamic range is suggested. The sensor is highly sensitive to H2O2 and can be applied as an electrochemical H2O2-sensor in the nuclear industry.

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors (Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Soobeen baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.194-198
    • /
    • 2023
  • With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.