• Title/Summary/Keyword: Hydrogen sulfide

Search Result 589, Processing Time 0.032 seconds

Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors (Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Soobeen baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.194-198
    • /
    • 2023
  • With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.

Field Study of Emission Characteristics of Ammonia and Hydrogen Sulfide by Pig Building Types (돈사 작업장 유형에 따른 암모니아와 황화수소의 실내농도 및 발생량에 관한 현장 조사)

  • Kim, Ki Youn;Park, Jae Beom;Kim, Chi-Nyon;Lee, Kyung Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2006
  • The principal aim of this field study was to determine the concentrations and emissions of gaseous contaminants such as ammonia and hydrogen sulfide in the different types of pig buildings in Korea and allow objective comparison between Korea and the other countries in terms of pig housing types. This field study was performed from May to June and from September to October in 2002. Pig buildings investigated in this research were selected in terms of three criteria; manure removal system, ventilation mode and growth stage of pig. Measurements of concentration and emission of ammonia and hydrogen sulfide in the pig buildings were done in 5 housing types and the visited farms were 15 sites per each housing type. Concentrations of ammonia and hydrogen sulfide were measured at three locations of the central alley in the pig building and emission rates of them were estimated by multiplying the average concentration($mg/m^3$) measured near the air outlet by the mean ventilation rate($m^3/h$) and expressed either per pig of liveweight 75kg(mg/h/pig) or per area($mg/h/m^2$). Concentrations of ammonia and hydrogen sulfide in the pig buildings were averaged to 7.5 ppm and 286.5 ppb and ranged from 0.8 to 21.4 ppm and from 45.8 to 1,235 ppb, respectively. The highest concentrations of ammonia and hydrogen sulfide were found in the mechanically ventilated buildings with slats; 12.1 ppm and 612.8 ppb, while the lowest concentrations of ammonia and hydrogen sulfide were found in the pig buildings with deep-litter bed system(2.2 ppm) and the naturally ventilated pig buildings with manure removal system by scraper(115.2 ppb), respectively(p<0.05). All the pig buildings were investigated not to exceed the threshold limit values(TLVs) of ammonia(25 ppm) and hydrogen sulfide(10 ppm). The mean emissions of ammonia and hydrogen sulfide per pig(75kg in terms of liveweight) and area($m^2$) from pig buildings were 250.2 mg/h/pig and 37.8 mg/h/pig and $336.3mg/h/m^2$ and $50.9mg/h/m^2$, respectively. The pig buildings with deep-litter bed system showed the lowest emissions of ammonia and hydrogen sulfide(p<0.05). However, the emissions of ammonia and hydrogen sulfide from the other pig buildings were not significantly different(p>0.05). Concentrations and emissions of ammonia and hydrogen sulfide were relatively higher in the pig buildings managed with deep-pit manure system with slats and mechanical ventilation mode than the different pig housing types. In order to prevent pig farm workers from adverse health effect caused by exposure to ammonia and hydrogen sulfide in pig buildings, they should wear the respirators during shift and be educated sustainably for the guideline related to occupational safety.

A Study on the Relationship between Halitosis Developments and Oral Environmental (구취발생과 구강환경의 연관성에 관한 연구)

  • Jee, Yun-Jeong;Kim, Jung-Sool;Lee, Jung-Hwa;Jeon, Eun-Suk
    • Journal of dental hygiene science
    • /
    • v.10 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • The purpose of this study was to analysis know the important oral environmental factors which affect halitosis components of the adult in order to provide basic data for halitosis prevention and establish a device to eliminate halitosis efficiently. The 97 adults who visited at the Dental Clinic in Metropolis (M=68, F=30) participated in this study that performed from March in 2009 to in 2010. The obtained results through items as caries status, periodontal status, salivary flow, the viscosity, pH, Snyder test, plaque deposit, tongue plaque and halitosis check were as followings. The average shame of halitosis components appeared at hydrogen sulfide 36.71 ppb methyl mercaptan 31.46ppb dimethyl sulfide 54.33 ppb and Ammonia 22.60 ppm. The normality and the detection comparative result dimethyl sulfide above reverse appeared highly at 46.9%, ammonia appeared highly at 52%. According to the Hydrogen sulfide level was a high relationship among age, CPI, tongue coat status, DMFT index which were statistically significant (p<0.05). According to the quantity of hydrogen sulfide level there was relationship where tongue coat status Saliva flow rate considers statistically(p<0.05). The quantity of methyl mercaptan level there was relationship where Dimethyl sulfide level, tongue coat status, Saliva flow rate considers statistically(p<0.05). The quantity of Dimethyl sulfide level there was relationship where Hydrogen sulfide level, ammonia level, tongue coat status, Saliva pH and Saliva flow rate considers statistically(p<0.05). Ammonia level there was relationship where Methyl mercaptan level, CPI, and Saliva flow rate considers statistically(p<0.05).

Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing (3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

Acute toxicity of hydrogen sulfide to larvae and adults of blue crab Portunus trituberculatus white shrimp Metapenaeus monoceros and prawn Macrobrachium nipponens (꽃게, 중하 및 징거미새우의 유생과 성체에 대한 황화수소의 급성독성)

  • Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 1997
  • In the present study, acute toxicity data were obtained for hydrogen sulfide to larvae and adults of blue crab Portunus trituberculatus, white shrimp Metapenacus monoceros and prawn Macrobrachium nipponense under continuous flow through system. The larvae 96hr-$LC_{50}$ values of hydrogen sulfide were 7.3, 9.3 and $9.0{\mu}g/\ell$ for P. trituberculatus, M. monoceros and M. nipponense respectively. The larval sensitivity of the three crustaceans studied for the hydrogen sulfide was in the order of P. trituberculatus> M. nipponense> M. monoceros. The adults 96hr-$LC_{50}$ values of hydrogen sulfide were 42.5, 37.8 and $56.6{\mu}g/\ell$ for P. trituberculatus, M. monoceros and M. ripponense, respectively. The order of toxicity of hydrogen sulfide to adults of the three crustaceans was P. tritruberculatus> M. monoceros> M. nipponense. The larval/adult ratios of hydrogen sulfide toxicity were 5.8, 4.1 and 6.3 for P. trituberculatus M. monoceros and M. nipponense respectively, and larvae were found to be more sensitive to hydrogen sulfide than adults in all cases.

  • PDF

Measurement of Low Hydrogen Sulfide Concentrations in the Coastal Area Near the Ulsan Industrial Complex (울산 산업단지인근 해변지역에서의 저 농도 황화수소 측정)

  • Yu, Mee Seon;Yang, Sung-Bong
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1555-1562
    • /
    • 2016
  • Concentrations of hydrogen sulfide in ambient air have been measured from January 2014 to June 2016 in a coastal area near the Ulsan National Industrial Complex. The measurement sites were 1 km, 2.6 km, 5.6 km, and 20 km away from a kraft pulp mill, which is located at the most southern edge of the complex. Concentrations above 0.4 ppb were monitored every 5 min and the highest concentration of the day was determined. From a total of 775 measurement days, hydrogen sulfide concentrations > 20 ppb were recorded on 36 and 38 days at the measurement site closest to the mill and the residential area 2.6 km away from the mill, respectively. At the site farthest from the mill, the concentrations were always 20 ppb lower than the malodor regulation for the residential area but sometimes higher than the odor recognition threshold for hydrogen sulfide. Although several emission sources of hydrogen sulfide have been published in the Pollutant Release and Transfer Register of Korea, the kraft pulp mill is considered to be the biggest contributor of atmospheric hydrogen sulfide in the southern coastal area of Ulsan.

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 1. Performance of Biofilter Packed with Media with Immobilized Thiobacillus sp. IW and Return-sludge (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 1. Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 바이오필터 운전)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.568-574
    • /
    • 2013
  • A semi-pilot biofilter packed with media with immobilized Thiobacillus sp. IW and return sludge, was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). At the incipient and middle stages of a semi-pilot biofilter operation, the hydrogen sulfide-removal efficiency behaves regardless of an inlet-load of ammonia. However, the ammonia-removal efficiency decreased as an inlet-load of hydrogen sulfide increased. Nevertheless, at the final stage of the semi-pilot biofilter operation, the ammonia-removal efficiency was not affected by the increase of hydrogen sulfide-inlet load. It is attributed to that a serious acidification of semi-pilot biofilter-media did not occur due to continuous injection of buffer solution at the final stage of the semi-pilot biofilter operation. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter, the maximum elimination capacities of hydrogen sulfide and ammonia turned out to be ca. 58 and $30g/m^3/h$, respectively. These maximum elimination capacities were estimated to be ca. 39 and 46% less than those for lab-scaled biofilter-separate elimination of hydrogen sulfide and ammonia, respectively. Thus, for the simultaneous biofilter-treatment of hydrogen sulfide and ammonia, the maximum elimination capacity of ammonia decreased by 7% more than that of hydrogen sulfide.

Adsorption of Hydrogen Sulfide on Surface Modified Activated Carbon using Ferric Nitrate (질산철을 이용하여 표면개질된 활성탄의 황화수소 흡착)

  • Jeong, Moonjoo;Lee, Seongwoo;Kim, Daekeun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 2015
  • The purpose of this study was to fabricate a ferric nitrate impregnated activated carbon, and the performance for hydrogen sulfide by adsorption was evaluated. Sodium hydroxide was utilized to control pH in the process during generation of ferric hydroxide on the surface of the carbon. Critical mixing duration for generation of ferric hydroxide on the carbon was 48 hrs at pH 1 of the solution, in which the chemical adsorption of hydrogen sulfide was enhanced. The adsorption capacity of the impregnated carbon increased up to 0.10 g hydrogen sulfide/g carbon, which was 4.3 times higher than that of the raw carbon. Presence of FeOOH on the surface of the impregnated carbon was examined by X-ray diffraction.

Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gas -II. Kinetics of Suffidation on Zinc Oxide - (고온석탄가스에서 황화물을 제거하기 위한 다공성 흡착제의 개발 -II. 산화아연의 황화반응에 관한 연구-)

  • 서인식;이재복;류경옥
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.11-22
    • /
    • 1988
  • Calcium oxide, lithium oxide and titanium oxide were investigated as additives of zinc oxide for the removal of hydrogen sulfide at high temperature. This experiment was performed in the range of 1.0-2.0 vol.% H$_2$S concentration at 623-873 K reaction temperature, using a thermogravimetric analyzer. A pore blocking model was found to fit the reaction rate and the kinetics data were sucessfully expressed by this model. The reactions between additive sorbents and hydrogen sulfide were first order with respect to hydrogen sulfide concentration in a gaseous mixture with nitrogen. Among the used sorbents, ZnO-CaO 0.5 at.% and ZnO-TiO$_2$ 2.0 at.% sorbents had the best additive effects on the sulfidation reaction between additive sorbents and hydrogen sulfide, whereas the ZnO-Li$_2$O sorbents were ineffective.

  • PDF

Removal of Hydrogen Sulfide and Methylmercaptan Using Thiobacillus in a Three Phase Fluidized Bed Bioreactor

  • KIM, KYUNG-RAN;KWANG-JOONG OH;KYUNG-YONG PARK;DONGUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.265-270
    • /
    • 1999
  • A three phase fluidized bed bioreactor immobilized with Thiobacillus sp. IW was tested to remove hydrogen sulfide and methylmercaptan with high loading rate. In a single gas treatment, the bioreactor removed 92- 98% of hydrogen sulfide with loading rate of 15- 66 g/l/h and removed 87-98% of methylmercaptan with loading rate of 14-60 gl/sup -1/h/sup -1/. In the mixed gas treatment, the removal efficiencies of hydrogen sulfide and methylmercaptan maintained at 89-99% for various inlet loading rates and were not affected by the inlet loading ratio of both gases in low loading rates. When the inlet concentration of methylmercaptan increased 3.8 times and was maintained for 30 h to observe the response of the bioreactor to sudden environmental change, the removal efficiency of methylmercaptan was maintained at an average of 91%.

  • PDF