• Title/Summary/Keyword: Hydrophilic

Search Result 1,710, Processing Time 0.023 seconds

Experimental study on the hydrophilic performance of pre-coated aluminum foil (알루미늄 호일의 친수코팅 성능 개선에 관한 실험적 연구)

  • 김영생;길용현;박환영;윤백;김자수소;김병열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.725-732
    • /
    • 1999
  • It is usual to use hydrophilic-coated aluminum foil for evaporator fin of air-conditioners to reduce air flow resistance caused by the water droplets condensed on the fin surface. The major effect of a hydrophilic coating is to reduce the contact angle of the condensate and prevent bridging of the condensate between the adjacent fins. The performance of hydrophilic coating generally tends to be degraded as it is used since the coating material is washed down by the condensate. In the present work, several types of hydrophilic coatings were evaluated in terms of durability of hydrophilicity, corrosion resistance and heat resistance. Results showed that an improved hydrophilic coating of resin type presented superb qualify in terms of durability and corrosion resistance while having almost the same level of qualify in heat resistance compared with the others.

  • PDF

Hydrophilic and Hydrophobic Group Characteristics for Nonionic Surfactants (비이온 계면활성제에 대한 친수성기와 소수성기의 그룹 특성)

  • Ha, Youn-Shick;Son, Man-Shick;Paek, U-Hyon
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.57-64
    • /
    • 1994
  • On the basis of the principle of Bratch's electronegativity equalization, we calculated group partial charges and group electronegativities for nonionic surfactants with Pauling's elecoonegativity parameters by using numerical calculation method. From calculated outputs we have investigated structural stability of micelle, characteristics of hydrophilic and hydrophobic groups, and relation between CMC(Critical Micelle Concentraion) and group partial charge and group electronegativity of hydrophilic and hydrophobic groups for nonionic surfactants. We have known that CMC by micelle formation depends upon group partial charge and group electronegativity of hydrophilic and hydrophobic groups for surfactants. Also, the structural stability of micelle in H2O solution is related to the electric double layer by the hydrophilic group of nonionic surfactants with H atoms in water CMC is diminished by the decrease of repeating units in hydrophilic group at constant hydrophobic group and is diminished by the increments of alkyl chains in hydrophobic group at constant hydrophilic group for nonionic surfactants. In conclusion, CMC is diminished because there is no electrostatic repulsion and is diminished of Debye length by the increments of partial charge of hydrophobic group.

  • PDF

Synthesis and Application for Hydrophilic Polyurethane of Non-swelling Type (Non-swelling type의 Hydrophilic polyurethane 합성 및 응용에 관한 연구)

  • Yang, Jeong-Han;Jeon, Jae-Woo;Yeum, Jeong-Hyun;Kim, Duck-Han;Oh, Kyoung-Suk;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.118-130
    • /
    • 2011
  • In this study, hydrophilic polyurethane (PU) was synthesized by one shot process to get good non-swelling effect and to keep high breathability using reactive silicone oil of mono terminal and bi-terminal types. We also blended non reactive silicone oil with pure hydrophilic PU to compare non-swelling effect and breathability with hydrophilic PU synthesized by the two types of reactive silicone oils. The hydrophilic films were analyzed by nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photo electron (XPS) spectroscopy, energy dispersive spectrometry (EDS), breathability, waterproofness, tensile strength, contact angle and swelling effect. The results showed that the film made by hydrophilic PU which was synthesized with mono terminal type silicone oil provided good non-swelling effect and acceptable moisture permeability due to the modified surface properties.

Preparation of UV-Curable Hydrophilic Coating Films Using Colloidal Silica (콜로이드 실리카를 이용한 UV 경화형 친수성 코팅 도막 제조)

  • Yang, Jun Ho;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.754-761
    • /
    • 2017
  • UV-curable hydrophilic coating solutions were prepared by mixing colloidal silica dispersed in alcohol with an acrylic monomer, pentaerythritol triacrylate (PETA). Hydrophilic coating films were also prepared by spin coating the hydrophilic coating solutions on PC substrates and UV curing for 10 minutes subsequently. The effect of the amount of colloidal silica in the coating solutions, which was varied from 10 g to 50 g, was investigated on the hydrophilic properties of UV-cured coating films. The results showed that the amount of colloidal silica had a great influence on the hydrophilic properties of UV-cured coating films and the coating film prepared with 30 g of colloidal silica showed a lowest contact angle of $37^{\circ}$ and an excellent pencil hardness of H.

Novel Synthesis of Hydrophilic Dipolar Chromophores using Dendronized Sulfonates

  • Kim, Mi-Rae;Maheswara, Muchchintala;Do, Jung-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.664-672
    • /
    • 2011
  • A series of hydrophilic chromophores was synthesized through introduction of dendritic sulfonate anions using click chemistry. A dendron structure bearing several sulfonate groups enhances hydrophilicity of attached chromophores. A click triazole formation connects chromophores with hydrophilic groups. A neutral trichloroethyl sulfonate has versatile features such as easy introduction, chemical endurance for isolation or storage, and convenient transformation to a hydrophilic anion. Zinc and OH mediated cleavage of trichloroethyl group from the neutral sulfonate undergoes to generate a water-soluble sulfonate anion. The solubility was examined with different counter cations and in different pH media and thus increased with the number of attached sulfonate ion. Two hydrophilic chromophores of stilbene-derived and azobenzene-derived dipolar structures exhibit clear negative and positive solvatochromism in protic solvents, respectively.

A study on the behavior of frost formation according to surface characteristics in the fin-tube heat exchanger (핀-관 열교환기의 표면특성에 따른 착상 거동에 관한 연구)

  • 류수길;이관수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.377-383
    • /
    • 1999
  • In this study, the behavior of frost formation according to surface characteristics in the fin-tube heat exchanger has been examined experimentally. The results show that the thickness of the frost which is attached to the hydrophilic heat exchanger becomes thin and the air pressure drop is smaller than that of bare aluminium heat exchanger However, the frost mass of hydrophilic heat exchanger is more than the bare one. Hence, high density frost is attached to hydrophilic heat exchanger. The sensible and latent heat flux of hydrophilic heat exchanger is bigger than that of bare one, but the increasing amount is very small and the improvement of thermal performance is also very small. The variation of fin-pitch of heat exchanger shows little influence on frost formation and hydrophilic heat exchanger loses its surface characteristics rapidly with increasing relative humidity.

  • PDF

A study of defrosting behavior according to surface characteristics in a fin-tube heat exchanger (표면 특성에 따른 휜-관 열교환기의 제상 거동에 관한 연구)

  • Lee, Kwan-Soo;Kim, Jun-Mo;Ji, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.921-927
    • /
    • 1999
  • In this study, the defrosting behaviors according to the surface characteristics in the fin-tube heat exchanger is experimentally examined. It is found that the draining rate of the hydrophilic and hydrophobic heat exchangers are evenly dispersed during defrosting, compared with that of the bare one. It is caused by the high density frost for the hydrophilic heat exchanger, and surface characteristic for the hydrophobic heat exchanger, respectively. The rest period of the hydrophilic and hydrophobic heat exchangers are shorter and their weight of residual water are smaller than those of the bare heat exchanger The hydrophilic and hydrophobic heat exchangers are more effective than the bare one in terms of defrosting efficiency, and the hydrophobic heat exchanger is better than the hydrophilic one.

  • PDF

Evaluation of Hydrophilic Polymer on the Growth of Plants in the Extensive Green Roofs (저관리형 옥상녹화 식물생육을 위한 Hydrophilic polymer의 효용성)

  • Yang, Ji;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.3
    • /
    • pp.357-364
    • /
    • 2014
  • This study aimed to determine effects of the use of water-retention additive, hydrophilic polymer, for extensive green roofs on growth of Juniperus chinensis var. sargentii and Euonymus fortunei 'Emerald and Gold' for woody plants, and Carex kobomugi and Carex pumila for herbaceous plants. Five different contents of hydrophilic polymer including 0% (Control), 1.0%, 2.5%, 5.0%, and 10% (polymer: medium (w/w), dry weight basis) were added to each of the container filed with a 100 kg of growth medium. Ten of plants were transplanted in each of square container ($1m(L){\times}1m(W){\times}0.3m$ (H)) built on the roof platforms in randomized complete block design in the $20^{th}$ of May, 2013. In results, excessively high volumetric soil water content, about 97-98%, was found in the substrate under elevated hydrophilic polymer concentration of at least 2.5%, during the entire growing period. The moisture content of the substrate containing 1.0% of hydrophilic polymer was higher about 20% in the range between 70% and 80%, compared tho that of Control substrate in the range between 50% and 60%, for 27 days after transplanting prior to abundant rainfall, indicating that the application of hydrophilic polymer to the extensive green roof substrate is effective to eliminate drought condition by retaining water in the substrate. Euonymus fortunei 'Emerald and Gold' and Carex kobomugi resulting in higher plant growth with 2.5% than those of the other treatment plants. Juniperus chinensis var. sargentii was observed the highest growth under 1.0% hydrophilic polymer treatement, and Carex pumila was founded the best growth with Control respectively. Plants that grown in both the 1.0% and 2.5% hydrophilic polymer survived all, while the plants that grown in the 5.0% and 10% hydrophilic polymer died after 3 months. These results suggest that advantage of the addition of hydrophilic polymer may be greater in drought-tolerant plants, but the mixture proportion of hydrophilic polymer should be determined according to the different features of the plant species being grown.

Effect of Polyethylene Glycol Molecular Weight and NCO Index on Properties of the Hydrophilic Reactive Hotmelt Polyurethane Adhesives (Polyethylene Glycol의 분자량 및 NCO index의 변화에 따른 Hydrophilic Reactive Hotmelt Polyurethane의 물성 변화)

  • Han, Young Chul;Kim, Dack Han;Oh, Kyung Seok;Shin, Hyeon Jeong;Yang, Jeong Han;Jeong, Han Mo
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.90-97
    • /
    • 2018
  • Hydrophilic reactive hot-melt polyurethane adhesive(HRHA) using a hydrophilic polyol having different molecular weight and NCO index was synthesized. This HRHA was synthesized using Polyethylene glycol(PEG) as a hydrophilic polyol, Polypropylene glycol(PPG) and Polycaprolactone diol(PCL) as hydrophobic polyols, and Methylene diphenyl diisocyanate(MDI) as an isocyanate. The changes in IR spectrum, viscosity and thermal properties of HRHA with different PEG molecular weights and NCO index were investigated, and the tensile strength and elongation of the HRHA casting film and the peel strength, moisture permeability and water pressure of the HRHA coated fabric were confirmed. In this experiment, as the molecular weight of PEG and NCO index increased, the adhesive strength, tensile strength, elongation and moisture permeability was increased but viscosity and Tg was decreased.

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.