• Title/Summary/Keyword: Hydrothermal Precipitation

Search Result 101, Processing Time 0.026 seconds

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Synthesis of Nano-sized TiO2 Powder using a Hydrothermal Process (수열합성법을 이용한 TiO2 나노 입자의 합성)

  • Kim, Gang Hyuk;Lee, Woo Jin;Kim, Donggyu;Lee, Sung Keun;Lee, Sang Hwa;Kim, Insoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.543-550
    • /
    • 2010
  • This paper investigated the synthesis conditions of nano-sized $TiO_2$ powder in a hydrothermal process at a temperature range of $100{\sim}180^{\circ}C$ considering the precipitation agent, precipitation pH, reaction temperature and time. Titanium hydroxide formed by $NH_4OH$ exhibited a lower crystallization temperature than that by NaOH and formed less aggregated $TiO_2$ particles. As the precipitation pH increased above 8, the shape of the particles changed from spherical to needle form, which appeared to be caused by dissolution and re-precipitation of the titanium hydroxide in an alkali environment.

A study on the synthesis of amorphous aluminium phosphate powders by hydrothermal precipitation method (수열침전법에 의한 비정질 인산알루미늄 분말의 합성에 관한 연구)

  • 김판채;최종건;황완인;이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.185-189
    • /
    • 2001
  • Amorphous aluminium phosphate powders were synthesized as a single phase by neutralization reaction of a stoichiometric mixture of $Al_2(SO_4)_3$ and $H_3PO_4$ using the NaOH or KOH solution and subsequently by the hydrothermal precipitation method. The synthesis conditions were as follows : starting materials; $Al_2(SO_4)_3$ and $H_3PO_4$,pH ranges of neutralization reaction; between 5.6 and 6.0, temperature ranges of hydrothermal reaction; between 170 and $180^{\circ}C$,time ranges of hydrothermal reaction; between 4 and 5hs. Under such synthesis conditions, the products are obtained as amorphous aluminium phosphate powders of 0.1~0.3$\mu\textrm{m}$ in size and are Eitted to USP (United Standard Pharmacopoeia) test.

  • PDF

Morphological changes of $BaCO_3$ microcrystal with the synthetic conditions (합성조건에 따른 $BaCO_3$ 마이크로 결정의 형태 변화)

  • Choi, Eun-Jee;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.223-227
    • /
    • 2009
  • $BaCO_3$ crystals with various morphology were prepared using precipitation, hydrothermal and ligand-assisted methods. An irregular structure of $BaCO_3$ microparticle was obtained by simple precipitation method from $Ba(NO_3)_2$ and $Na_2CO_3$ in aqueous solution. Hexagonal pyramidals of $BaCO_3$ were synthesized using a hydrothermal method between $Ba(NO_3)_2$ and urea. Hexagonal rods of $BaCO_3$ were also synthesized using the ligand-assisted hydrothermal method. The aspect ratio of $BaCO_3$ hexagonal rods was increased with the concentration of ligand.

Comparison of Magnesium Hydroxide Particles by Precipitation and Hydrothermal Treatment for Flame Retardant Application to Low Density Polyethylene and Ethylene-Co-Vinyl Acetate Resin (침전법과 수열처리로 제조된 수산화마그네슘 비교와 이의 저밀도 폴리에틸렌-에틸렌 비닐 아세테이트 수지 난연제 적용)

  • Hyun, Mi Kyung;Lim, Hyung Mi;Yoon, Joonho;Lee, Dong Jin;Lee, Seung-Ho;Whang, Chin Myung;Jeong, Sang Ok
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2009
  • $Mg(OH)_2$ particles were prepared by precipitation and a hydrothermal treatment to examine the effect of $MgCl_2$ concentration, alkali type and concentration, temperature, hydrothermal treatment on the formation of $Mg(OH)_2$ particles using full factorial design, as one of DOE (Design of experiment) methods. The primary particle size is similar to the secondary particle size for the samples after the hydrothermal treatment, where the average particle size of $Mg(OH)_2$ increased with increasing the concentration of $MgCl_2$ and hydrothermal temperature and decreasing alkali/Mg molar ratio. On the other hand, for the samples prepared from precipitation, the secondary particle size is larger than the primary particles due to aggregation. The difference in alkaline source is that the particles prepared from $NH_4OH$ exhibit the larger size with better dispersion than those from NaOH. Low density polyethylene and ethylene-co-vinyl acetate (LDPE-EVA) resin composed of the smaller secondary particle size of $Mg(OH)_2$ shows a higher limited oxygen index (LOI) at 50 and 55% loading, but the smaller primary particle size may result in a better grade in UL-94 tests. At the high loading of 60%, all samples with any preparation methods exhibit V-0 grade but the LOI value depends on not only primary particle size but also dispersion state.

A study on the synthesis of tin oxide crystalline by the liquid reduction precipitation method and hydrothermal process (액상환원침전법 및 수열반응법을 이용한 주석산화물 결정 합성에 관한 연구)

  • Park, Il-Jeong;Kim, Geon-Hong;Kim, Dae-Weon;Choi, Hee-Lack;Jung, Hang-Chul
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • In this work, tin oxides were obtained by the liquid reduction precipitation method and hydrothermal process using $SnCl_2{\cdot}2H_2O$, $N_2H_4$, and NaOH. Tin oxide crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM). Depending on the molar ratio of the raw materials, tin oxide crystalline with the spherical and rectangular plate-like shape could be obtained, the crystal phase was SnO and $Sn_6O_4(OH)_4$. And the obtained SnO crystals by a hydrothermal reaction showed various shapes, such as, spherical, plate-like and flower-like architectures depending on the temperature conditions.

Preparation of Zinc Oxide by Hydrothermal Precipitation Method and their Photocatalytic Characterization (수열합성법에 의한 산화아연의 제조와 광분해 특성)

  • Jeong, Sang-Gu;Na, Seok-Eun;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.808-814
    • /
    • 2012
  • Photocatalytic zinc oxide powders were prepared from precursor zinc acetate and ammonia solution at elevated temperature, $80^{\circ}C$, by hydrothermal precipitation method. The effect of operating parameters, pH of ammonia solution and concentration of zinc acetate solution, on the characteristics of zinc oxide powders were experimentally examined. Zinc oxide powders prepared at the conditions of pH 11, zinc acetate concentration of 1.0 M, precipitation temperature of $80^{\circ}C$, showed smallest average particle diameter of $3{\mu}m$. SEM and XRD analysis confirmed that prepared zinc oxide has hexagonal rods structure, and Anatase type crystallinity. In addition, DRS and PL analysis showed that the zinc oxide has activity at the range of 200~400 nm of UV light. And the zinc oxide decomposed 57% of a food-color stamp Brilliant blue FCF for 3 hours under the UV radiation.

Hydrothermal Solution-Rhyolite Reaction and Origin of Sericitite in the Yukwang Mine (유문암-열수 반응과 유광 견운모 광상의 성인)

  • Park, Maeng-Eon;Choi, In-Sik;Kim, Jin-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.225-232
    • /
    • 1992
  • The hydrothermal alteration is evaluated using multicomponent equilibrium calculations with the program CHILLER for the reactions between hydrothermal water and rhyolite at the temperature of $300^{\circ}C$ and pressure of 500 bars. The chemical-reaction model on the depositional processes of the sericitite confirms that the hydrothermal water-rock interaction(hydrothermal alteration) is the main mechanism of the sericitite formation. The principal change in the aqueous phase during the reaction is the pH increase. Overall trends for the major species are the increase in total molalities of K, Ca, $SiO_2$, Al, Mg, Fe, Na, and sulfide in solid phase with hydrothermal water-rhyolite reaction and the decrease of them in aqeous solution by precipitation of hydrothermal products. Quartz and sericite are the first minerals to form. The sequence of minerals to precipitate following them is chlorite, epidote, pyrite and microcline as water/rock ratio decreases. Although calculated results cannot duplicate the complexities of natural hydrothermal alteration, the calculation provides thermodynamic constraints on the natural process. The calculation results resemble those of experimental studies. Sericitite forms where pH decreases and water/rock ratio increases.

  • PDF

Hydrothermal Synthesis and Mechanical Characterization of 3mol%Y2O3-ZrO2 by Urea Contents (우레아 첨가량 변화에 따라 수열합성법으로 제조 된 3mol%Y2O3-ZrO2 분말의 합성 및 기계적 특성 평가)

  • Lee, Hak-Joo;Go, Myung-Won;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.425-431
    • /
    • 2011
  • The industrial manufacturing of YSZ products can be summarized as a three step process: a) hydrolysis of zirconyl chloride and mixing of other solutions, b) precipitation, and c) calcination. The addition of ammonia or OH- is essential in the precipitation process. However, a strong agglomeration was observed in the results of an ammonia or OH- addition. Thus, it is necessary to disperse the powders smoothly in order to improve the mechanical strength of YSZ. In this study, YSZ was synthesized using the urea stabilizer and hydrothermal method. YSZ powders were synthesized using a hydrothermal method with Teflon Vessels at $180^{\circ}C$ for 24 h. The mole ratio of urea to Zr was 0, 0.5, 1, and 2. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens ($33\;mm{\times}8\;mm{\times}1{\pm}0.5\;mm$) for three-point bend tests were used in the mechanical properties evaluation. The crystalline of YSZ powders observed a tetragonal phase in the sample with a ratio of Zr:urea = 1:2 addition and a hydrothermal reaction time of 24 h. The average primary particle size of YSZ was measured to be 9 nm to 11 nm. The agglomerated particle size was measured from 15 nm to 30 nm. The three-point bending strength of the YSZ samples was 142.47 MPa, which is the highest value obtained for the Zr:urea = 1:2 ratio addition YSZ sample.

Electrochemical Studies on the Mechanism of the Fabrication of Ceramic Films by Hydrothermal-Electrochemical Technique

  • Zhibin Wu;Masahiro Yoshimura
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.869-874
    • /
    • 1999
  • In this paper, electrochemical techniques are used to investigate hydrothermal-electrochemically formation of barium titanate (BT) ceramic films. For comparison, the electrochemical behaviors of anodic titanium oxide films formed in alkaline solution were also investigated both at room temperature and in hydrothermal condition at 150.0 ℃. Film structure and morphology were identified by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Titanium oxide films produced at different potentials exhibit different film morphology. The breakdown of titanium oxide films anodic growth on Ti electrode plays an important roles in the formation of BT films. BT films can grow on anodic oxide/metal substrate interface by short-circuit path, and the dissolution-precipitation processes on the ceramic film/solution interface control the film structure and morphology. Based upon the current experimental results and our previous work, extensively schematic proce-dures are proposed to model the mechanism of ceramic film formation by hydrothermal-electrochemical method.