• 제목/요약/키워드: Hypersonic Flow

검색결과 131건 처리시간 0.022초

비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석 (SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS)

  • 김동현
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.

Aero-optical effects in the hypersonic flow field

  • Shi, Ketian;Miao, Wenbo;Li, Pengfei;Chen, Xiaoli
    • International Journal of Aerospace System Engineering
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2015
  • Aero-optical effects induced by the flow around the optical window degrade the performance of the IR seeker, especially for the hypersonic flow. For the thermochemical non-equilibrium flow, index of refraction model and optical transmission calculation method are developed to predict the aero-optical effects. The optical distortion is discussed for the typical optical widow shape and flow condition. The influence on aero-optical effects is analyzed.

HLLE+와 LU-AF를 이용한 극초음속 화학적 비평형 유동장 해석 (Hypersonic Chemical Nonequilibrium Flow Analysis with HLLE+ and LU-AF)

  • 박수형;권장혁
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.47-54
    • /
    • 2000
  • A robust Navier-Stokes code has been developed to efficiently predict hypersonic flows in chemical nonequilibrium. The HLLE+ flux discretization scheme is used to improve accuracy and robustness of hypersonic flow analysis. An efficient LU approximate factorization method is also used to solve the flow equations and species continuity equations in fully coupled fashion to implicitly treat stiff source terms of chemical reactions. The HLLE+ scheme shows lower grid dependency for the wall heating rates than other schemes. The developed code has been used to compute chemical nonequilibrium air flow through expanding hypersonic nozzle and past two and three dimensional blunt-nosed bodies. The results are in good agreement with existing numerical and experimental results.

  • PDF

Flow Field Analysis on the Stagnation Streamline of a Blunt Body

  • Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.149-156
    • /
    • 2016
  • The hypersonic flow on the stagnation streamline of a blunt body is analyzed with quasi one-dimensional (1-D) Navier-Stokes equations approximated by adopting the local similarity to the two-dimensional (2-D)/axisymmetric Navier-Stokes equations. The governing equations are solved using the implicit finite volume method. The computational domain is confined from the stagnation point to the shock wave, and the shock fitting method is used to find the shock position. We propose a boundary condition at the shock, which employs the shock wave angle in the vicinity of the stagnation streamline using the shock shape correlation. As a result of numerical computation conducted for the hypersonic flow over a sphere, the proposed boundary condition is shown to improve the accuracy of the prediction of the shock standoff distance. The quasi 1-D Navier-Stokes code is efficient in computing time and is reliable for the flow analysis along the stagnation streamline and the prediction of heat flux at the stagnation point in the hypersonic blunt body flow.

극초음속 쐐기 유동의 Viscous Interaction (Hypersonic Viscous Interaction of Wedge Flows)

  • 김규홍;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.40-45
    • /
    • 1996
  • This paper discribes the viscous interaction of Hypersonic Wedge Flows using Roe FDS and AUSM+. For this purpose we developed the frozen and the equilibrium code and numerically simulated the viscous interaction by changing the surface temperature and the mach number. We used curve fitting data in NASA Reference Publication 1181, 1260 to calculate equilibrium properties. We compare the equilibrium flow with the frozen flow. We conclude that the mach number and the surface temperature are significant parameters, as the surface temperature and the mach number increase the viscous interaction becomes stronger, and we must consider high-temperature effects in hypersonic flow

  • PDF

극초음속 유동에서의 표면 촉매 재결합: 수치해석적 기법 리뷰 (Surface Catalytic Recombination in Hypersonic Flow: A Review of the Numerical Methods)

  • 김익현;양요셉
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.33-41
    • /
    • 2023
  • This paper provides a general overview of surface catalytic recombination in hypersonic flow. The surface catalytic recombination phenomena is elaborated in terms of its general overview and numerical modeling associated with it. The general overview of the surface catalytic recombination phenomena describes the elementary surface reactions for the surface catalytic and the role of the surface catalytic recombination efficiency in the heat transfer determination. In the numerical modeling, the surface catalytic recombination is described based on the stagnation-point boundary layer analysis, and finite-rate surface reaction modeling. Throughout this overview manuscript, a general understanding of this phenomena is obtained and can be used as foundation for deeper application with the numerical computational fluid dynamics (CFD) flow solver to estimate the surface heat transfer in the hypersonic vehicles.

Aerodynamics Simulation of Three Hypersonic Forebody/Inlet Models

  • Xiao, Hong;Liu, Zhenxia;Lian, Xiaochun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.456-459
    • /
    • 2008
  • The purpose of this paper is to examine the aerodynamic characteristics of three hypersonic configurations including pure liftbody configuration, pure waverider configuration and liftbody integrated with waverider configuration. Hypersonic forbodies were designed based on these configurations. For the purpose to integrate with ramjet or scramjet, all the forebodies were designed integrated with hypersonic inlet. To better understand the forebody performance, three dimensional flow field calculation of these hypersonic forebodies integrated with hypersonic inlet were conducted in the design and off design conditions. The computational results show that waverider offer an aerodynamic performance advantage in the terms of higher lift-drag ratios over the other two configurations. Liftbody offer good aerodynamic performance in subsonic region. The aerodynamic performance of the liftbody integrated with waverider configuration is not comparable to that of pure waverider in the terms of lift-drag ratios and is not comparable to that of pure liftbody in subsonic. But the liftbody integrated with waverider configuration exhibit good lateral-directional and longitudinal-directional stability characteristics. Both pure waverider and liftbody integrated with waverider configuration can provide relatively uniform flow for the inlet and offer good aerodynamic characteristics in the terms of recovery coefficient of total pressure and uniformity coefficient.

  • PDF

극초음속 추진기관 고공환경 시험장치의 이차목 디퓨저 수축비에 따른 성능연구 (Performance Study on the Supersonic Diffuser Contraction Ratio of High-Altitude Test Facility for Hypersonic Propulsion)

  • 이성민;신동해;신민규;고영성;김선진;이정민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1026-1030
    • /
    • 2017
  • 본 연구에서는 극초음속 추진기관을 위한 시험설비의 장치인 초음속 디퓨저 설계하였고, 두 가지 수축비를 변수로 선정하여 각각의 디퓨저를 수치해석 및 상온 시험을 진행하였다. 수치해석을 통하여 각각의 마하수와 압력에 대한 내부 유동을 확인하였다. 상온 시험을 통하여 진공챔버에 형성되는 압력과 벽면 압력을 통하여 내부에 형성되는 압력을 확인할 수 있었다. 상온 시험과 수치해석의 차이점을 분석하고, 향후 극초음속 추진기관을 위한 시험설비를 구축할 기초자료를 확보하였다.

  • PDF

NUMERICAL METHODS FOR COMPUTATIONS OF NONEQUILIBRIUM HYPERSONIC FLOW AROUND BODIES

  • Park, Tae-Hoon;Kim, Pok-Son
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper we present numerical methods fur computations of nonequilibrium hypersonic flow of air around bodies including chemical reaction effects and present numerical result of the flow over concave corners. We developed implicit finite difference method to overcome numerical difficulties with the lack of resolution behind the shock and near the body. Using our method we were able to find details of the flow properties near the shock and body and were able to continue the computation of the flow for a long distance from the corner of the body.

화학반응을 수반하는 극초음속 희박류 유동의 직접모사법 개발 (A DSMC Technique for the Analysis of Chemical Reactions in Hypersonic Rarefied Flows)

  • 정찬홍;윤성준
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.63-70
    • /
    • 1999
  • A Direct simulation Monte-Carlo (DSMC) code is developed, which employs the Monte-Carlo statistical sampling technique to investigate hypersonic rarefied gas flows accompanying chemical reactions. The DSMC method is a numerical simulation technique for analyzing the Boltzmann equation by modeling a real gas flow using a representative set of molecules. Due to the limitations in computational requirements. the present method is applied to a flow around a simple two-dimensional object in exit velocity of 7.6 km/sec at an altitude of 90 km. For the calculation of chemical reactions an air model with five species (O₂, N₂, O, N, NO) and 19 chemical reactions is employed. The simulated result showed various rarefaction effects in the hypersonic flow with chemical reactions.

  • PDF