• Title/Summary/Keyword: Hypoxia-inducible factor 1

Search Result 158, Processing Time 0.035 seconds

Hypoxia Inducible Factor-$1{\alpha}$ Directly Induces the Expression of Receptor Activator of Nuclear Factor-${\kappa}B$ Ligand in MLO-Y4 Osteocytes

  • Baek, Kyunghwa;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Osteocytes may function as mechanotransducers by regulating local osteoclastogenesis. Reduced availability of oxygen, i.e. hypoxia, could occur during disuse, bone development, and fracture. Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell derived essential factor for osteoclastogenesis. The hypoxia induced osteoclastogenesis via increased RANKL expression in osteoblasts was demonstrated. Hypoxic regulation of gene expression generally involves activation of the hypoxia-inducible factor (HIF) transcription pathway. In the present study, we investigated whether hypoxia regulates RANKL expression in murine osteocytes and HIF-$1{\alpha}$ mediates hypoxia-induced RANKL expression by transactivating RANKL promoter, to elucidate the role of osteocyte in osteoclastogenesis in the context of hypoxic condition. The expression levels of RANKL mRNA and protein, as well as hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) protein, were significantly increased in hypoxic condition in MLO-Y4s. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression in MLO-Y4s under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ blocked hypoxia-induced RANKL expression. To further explore to find if HIF-$1{\alpha}$ directly regulates RANKL transcription, a luciferase reporter assay was conducted. Hypoxia significantly increased RANKL promoter activity, whereas mutations of putative HIF-$1{\alpha}$ binding elements in RANKL promoter prevented this hypoxia-induced RANKL promoter activity in MLO-Y4s. These results suggest that HIF-$1{\alpha}$ mediates hypoxia-induced up-regulation of RANKL expression, and that in osteocytes of mechanically unloaded bone, hypoxia enhances osteoclastogenesis, at least in part, via an increased RANKL expression in osteocytes.

Changes in Stanniocalcin-2 and Hypoxia-Inducible Factor-1α mRNA Expression in Medaka Oryzias dancena Exposed to Acute Hypoxia (저산소환경에 의한 송사리(Oryzias dancena)의 Stanniocalcin-2와 Hypoxia-Inducible Factor-1α mRNA 발현의 변화)

  • Shin, Ji Hye;Sohn, Young Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • Some fish live in aquatic environments with low or temporally changing $O_2$ availability. Variation in dissolved oxygen (DO) levels requires behavioral, physiological, and biochemical adaptations to ensure the uptake of sufficient $O_2$. Several species are relatively well adapted to tolerate low $O_2$ partial pressures (hypoxia). The medaka (Oryzias dancena ) is an important model organism for biomedical research that shows remarkable tolerance to hypoxia. We investigated the regulation and role of hypoxia-inducible factor-1 (HIF-$1{\alpha}$) as a general hypoxia-response gene and stanniocalcin-2 (STC2), which is one of the genes regulated by HIF-$1{\alpha}$ in mammals under hypoxia. We subjected adult male medaka to the following three acute hypoxia regimes: 1, 24, and 72 h at DO = $1.8{\pm}0.5$ ppm. The changes in STC2 and HIF-$1{\alpha}$ mRNA were monitored using quantitative real-time reverse-transcription PCR. We found strong upregulation of HIF-$1{\alpha}$ mRNA in the livers of fish exposed to hypoxia. Hypoxia rapidly upregulated STC-2 mRNA expression in muscle, but not in the brain, gills, liver, or intestine. Therefore, unlike in mammals, hypoxia might regulate O. dancena STC-2 expression in an HIF-$1{\alpha}$-independent manner.

Activation of Hypoxia Inducible Factor-1 Alpha by Estrogen Receptor Alpha (에스트로젠 수용체알파에 의한 Hypoxia Inducible Factor-1의 전사 활성조절)

  • Ryu, Kwang-Hee;Lee, Young-Joo
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.102-105
    • /
    • 2010
  • Our previous results showed that hypoxia inducible factor-1 (HIF-1) activated estrogen receptor (ER) in the absence of ligand. In this study, we have studied the effect ER overexpression on the activation of HIF-1. ER overexpression induced transcription activation of hypoxia response element driven luciferase and vascular endothelial growth factor. As a negative control, the effect of ER on androgen receptor response element was used. Our result indicate that the two ER$\alpha$ and HIF-1 signaling pathways shares part of the activation pathway.

Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1

  • Ruthenborg, Robin J.;Ban, Jae-Jun;Wazir, Anum;Takeda, Norihiko;Kim, Jung-Whan
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.637-643
    • /
    • 2014
  • Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System

  • Kim, Seunghee;Lee, Minjae;Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.45-57
    • /
    • 2020
  • In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson's disease, and Alzheimer's disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

The Expression of Hypoxia Inducible Factor-1 $\alpha$ by Desferrioxamine Induces Radioresistance in Mouse Hepatoma Cell Line (쥐의 간암 세포에서 Desferrioxamine에 의해 유도된 Hypoxia Inducible Factor-1 $\alpha$가 방사선 저항성을 초래함)

  • Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.217-224
    • /
    • 2004
  • Purpose: It is well known that the radiosensitivity of tumor cells can be significantly reduced under hypoxic conditions. Hypoxia-inducible factor-1 $\alpha$ (HIF-1 $\alpha$) plays a pivotal role in the essential adaptive responses to hypoxia. Therefore this study investigated the relationship between HIF-1 $\alpha$ expression and radiosensitivity. M Mouse hepatoma cell line hepafcic7 and HIF-1 $\beta$-deficient mutant cell line hepa1C4 were used to analyze the role of HIF-1 a. on radiosensitivity. These cells were exposed for 6 h to desferrioxamine (DFX) before radiation. HIF-1$\alpha$. expression was examined by Western blot. Apoptosis was assessed by DNA fragmentation, propidium iodide staining, and apoptotic cell death detection ELISA kit. Radiation sensitivity was determined using MTT assay. The radiobioiogical parameters, surviving fractions at 2 Gy and 8 Gy, and mean inactivation dose (MID) from the linear-quadratic model were used to assess radiation sensitivity in the statistical analyses. Results: The expression of HIF-1 $\alpha$. was Increased, whereas apoptosis was decreased, by radiation In the presence of DFX In hepal cl c7, but not In hepal C4. The radlosensitivity of hepal C4 cells was not significantly affected by DFX treatment. The radiosensitivlty of hepal cl c7 cells was significantly decreased in the presence of DFX Conclusion: The expression of HIF-1 w by hypoxia-mimic agent DFX reduced apoptosls and radiosensitlvity in mouse hepatoma cell line hepafclc7. These results suggested that HIF-1 u could be Induced by irradiation in hypoxic ceils of tumor masses, and that this mlght Increase radioresistance in hypoxic cells.

Hypoxia Induced Multidrug Resistance of Laryngeal Cancer Cells via Hypoxia-inducible Factor-1α

  • Li, Da-Wei;Dong, Pin;Wang, Fei;Chen, Xin-Wei;Xu, Cheng-Zhi;Zhou, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4853-4858
    • /
    • 2013
  • Objectives: To investigate whether hypoxia has an effect on regulation of multidrug resistance (MDR) to chemotherapeutic drugs in laryngeal carcinoma cells and explore the role of hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Methods: Laryngeal cancer cells were cultured under normoxic and hypoxic conditions. The sensitivity of the cells to multiple drugs and levels of apoptosis induced by paclitaxel were determined by MTT assay and annexin-V/propidium iodide staining analysis, respectively. HIF-$1{\alpha}$ expression was blocked by RNA interference. The expression of HIF-$1{\alpha}$ gene was detected by real-time quantitative RT-PCR and Western blotting. The value of fluorescence intensity of intracellular adriamycin accumulation and retention in cells was evaluated by flow cytometry. Results: The sensitivity to multiple chemotherapy agents and induction of apoptosis by paclitaxel could be reduced by hypoxia (P<0.05). A the same time, the adriamycin releasing index of cells was increased (P<0.05). However, resistance acquisition subject to hypoxia in vitro was suppressed by down-regulating HIF-$1{\alpha}$ expression. Conclusion: HIF-$1{\alpha}$ could be considered as a key regulator for mediating hypoxia-induced MDR in laryngeal cancer cells via inhibition of drug-induced apoptosis and decrease in intracellular drug accumulation.

Wheatgrass extract inhibits hypoxia-inducible factor-1-mediated epithelial-mesenchymal transition in A549 cells

  • Do, Nam Yong;Shin, Hyun-Jae;Lee, Ji-Eun
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Epithelial-mesenchymal transition (EMT) is involved in not only cancer development and metastasis but also non-cancerous conditions. Hypoxia is one of the proposed critical factors contributing to formation of chronic rhinosinusitis or nasal polyposis. Wheatgrass (Triticum aestivum) has antioxidant, anti-aging, and anti-inflammatory effects. In this study, we analyzed whether wheatgrass has an inhibitory effect on the EMT process in airway epithelial cells. MATERIALS/METHODS: A549 human lung adenocarcinoma cells were incubated in hypoxic conditions ($CO_2$ 5%/$O_2$ 1%) for 24 h in the presence of different concentrations of wheatgrass extract (50, 75, 100, and $150{\mu}g/mL$) and changes in expression of epithelial or mesenchymal markers were evaluated by immunoblotting and immunofluorescence. Accordingly, associated EMT-related transcriptional factors, Snail and Smad, were also evaluated. RESULTS: Hypoxia increased expression of N-cadherin and reduced expression of E-cadherin. Mechanistically, E-cadherin levels were recovered during hypoxia by silencing hypoxia inducible factor (HIF)-$1{\alpha}$ or administering wheatgrass extract. Wheatgrass inhibited the hypoxia-mediated EMT by reducing the expression of phosphorylated Smad3 (pSmad3) and Snail. It suppressed the hypoxia-mediated EMT processes of airway epithelial cells via HIF-$1{\alpha}$ and the pSmad3 signaling pathway. CONCLUSION: These results suggest that wheatgrass has potential as a therapeutic or supplementary agent for HIF-1-related diseases.