• Title/Summary/Keyword: ICHEON-SI

Search Result 47, Processing Time 0.026 seconds

Recovery of Metallurgical Silicon from Slurry Waste (Wafer Sawing 공정의 폐슬러리로부터 금속 실리콘 회수에 관한 연구)

  • Kim, Jong-Young;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.189-194
    • /
    • 2011
  • Metallurgical grade silicon was recovered from slurry waste for ingot sawing process by acid leaching and thermal treatment. SiC abrasive was removed by gravity concentration and centrifugation. Metal impurities were removed by the acid leaching using HF/HCl. The remaining SiC was separated by the thermal treatment at $1600^{\circ}C$ in an inert atmosphere by the difference in melting points. The purity of the obtained silicon was found to be around 99.7%.

Application of 3-dimensional phase-diagram using FactSage in C3H8-SiCl4-H2 System (C3H8-SiCl4-H2 시스템에서 FactSage를 이용한 압력-조성-온도 3차원 상평형도의 응용)

  • Kim, Jun-Woo;Kim, Hyung-Tae;Kim, Kyung-Ja;Lee, Jong-Heun;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure(P), temperature(T) and gas composition(C) as variables in $C_3H_8-SiCl_4-H_2$ system. During the calculation, the ratio of Cl/Si and C/Si is maintained to be 4 and 1, respectively, and H/Si ratio is varied from 2.67 to 15,000. The P-T-C diagram showed very steep phase boundary between SiC+C and SiC region perpendicular to H/Si axis and also showed SiC+Si region with very large H/Si value of ~6700. The diagram can be applied not only to the prediction of the deposited phase composition but to compositional variation due to the temperature distribution in the reactor. The P-T-C diagram could provide the better understanding of chemical vapor deposition of silicon carbide.

Plasma Resistance and Etch Mechanism of High Purity SiC under Fluorocarbon Plasma

  • Jang, Mi-Ran;Paek, Yeong-Kyeun;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.328-332
    • /
    • 2012
  • Etch rates of Si and high purity SiC have been compared for various fluorocarbon plasmas. The relative plasma resistance of SiC, which is defined as the etch rate ratio of Si to SiC, varied between 1.4 and 4.1, showing generally higher plasma resistance of SiC. High resolution X-ray photoelectron analysis revealed that etched SiC has a surface carbon content higher than that of etched Si, resulting in a thicker fluorocarbon polymer layer on the SiC surface. The plasma resistance of SiC was correlated with this thick fluorocarbon polymer layer, which reduced the reaction probability of fluorine-containing species in the plasma with silicon from the SiC substrate. The remnant carbon after the removal of Si as volatile etch products augments the surface carbon, and seems to be the origin of the higher plasma resistance of SiC.

Synthesis of high purity carbon powders using inductively thermal plasma (유도 열플라즈마 공정을 이용한 고순도 카본분말 합성)

  • Kim, Kyung-In;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.309-313
    • /
    • 2013
  • Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. Especially, high purity SiC is applicable to the fields of power semiconductor and lighting emitting diode (LED). In this work, high purity carbon powders as raw material for high purity SiC were prepared by a RF induction thermal plasma. Dodecane ($C_{12}H_{26}$) as hydrocarbon liquid precursor has been utilized for synthesis of high purity carbon powders. It is found that the filtercollected carbon powders showed smaller particle size (10~20 nm) and low crystallinity compared to the reactor-collected carbon powders. The purities of reactor-collected and filter-collected carbon powders were 99.9997 % (5N7) and 99.9993 % (5N3), respectively. In addition, the impurities of carbon powders synthesized by RF induction thermal plasma were mainly originated from the surrounding environment.

Thermodynamic Prediction of SiC Deposition in C3H8-SiCl4-H2 System (C3H8-SiCl4-H2 시스템에서의 탄화 실리콘 증착에 대한 열역학적인 해석)

  • Kim, Jun-Woo;Jeong, Seong-Min;Kim, Hyung-Tae;Kim, Kyung-Ja;Lee, Jong-Heun;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we demonstrated the phase stability of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure, temperature and gas composition as variables. The ${\beta}$-SiC predominant region over other solid phases like carbon and silicon was changed gradually and consistently with temperature and pressure. Practically these maps provide necessary conditions for homogeneous ${\beta}$-SiC deposition of single phase. With the thermodynamic analyses, the CVD apparatus for uniform coating was modeled and simulated with computational fluid dynamics to obtain temperature and flow distribution in the CVD chamber. It gave an inspiration for the uniform temperature distribution and low local flow velocity over the deposition chamber. These calculation and model simulation could provide milestones for improving the thickness uniformity and phase homogeneity.

Endurance and Compatibility of Silicon Carbide as Fluidized Bed Reactor for Poly-silicon (폴리실리콘용 유동층 반응기에서 탄화규소의 내구성과 적합성 연구)

  • Choi, Kyoon;Seo, Jin Won;Hahn, Yoon Soo;Son, Min Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.354-361
    • /
    • 2014
  • In order to utilize silicon carbide (SiC) as an inner part of fluidized bed reactor (FBR) for manufacturing poly-silicon, we have carried out the thermodynamic calculation on the overall reactions including poly-silicon synthesis and compatibility of SiC with FBR process. The resources of silicon included $SiH_4(MS)$, $SiHCl_3(TCS)$ and $SiCl_4(STC)$ and the thermodynamic yield of the FBR with MS, TCS and STC were compared each other with variable range of temperature, pressure and hydrogen to silicon ratio. The silicon yield of MS, TCS and STC were 100%, 28% and 4%, respectively, throughout the conventional FBR conditions. Silicon carbide having high hardness and strength showed strong resistance to granule collisions during the FBR process using a lab-scale reactor. And it also showed quite good compatibility with the typical FBR processes of MS and TCS resources.

Effects of SiO2 on the High Temperature Resistivities of AIN Ceramics (SiO2 첨가가 AIN 세라믹스의 고온 비저항에 미치는 영향)

  • Lee, Won-Jin;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.69-74
    • /
    • 2008
  • The effects of $SiO_2$ impurity on the high temperature resistivities of AIN ceramics have been investigated. When $SiO_2$ was added into 1 wt% $Y_2O_3$-doped AIN, DC resistivities have decreased and electrode polarizations disappeared. Impedance spectroscopy showed two semi-circles at $600^{\circ}C$, which were attributed to grain and grain boundary, respectively. $SiO_2$ doping had more significant effects on the grain resistivity than grain boundary resistivity, implying that doped Si acted as a donor in AIN lattice. In addition, voltage dependency of DC resistivity was observed, which might be related to dependency of size of grain boundary semi-circle on the bias voltage in impedance spectroscopy.

Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis

  • Kim, Kyung-Mi;Hahn, Yoonsoo;Lee, Sung-Min;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.392-399
    • /
    • 2018
  • $C_f/SiC$ composites were prepared via a process combining chemical vapor infiltration (CVI) and precursor infiltration pyrolysis (PIP), wherein silicon carbide matrices were infiltrated into 2.5D carbon preforms. The obtained composites exhibited porosities of 20 vol % and achieved strengths of 244 MPa in air at room temperature and 423 MPa at $1300^{\circ}C$ under an Ar atmosphere. Carbon fiber pull-out was rarely observed in the fractured surfaces, although intermediate layers of pyrolytic carbon of 150 nm thickness were deposited between the fiber and matrix. Fatigue fracture was observed after 1380 cycles under 45 MPa stress at $1000^{\circ}C$. The fractured samples were analyzed by transmission electron microscopy to observe the distributed phases.

Silicon purification through acid leaching and unidirectional solidification (산처리와 일방향 응고를 이용한 실리콘 정제)

  • Eum, Jung-Hyun;Chang, Hyo-Sik;Kim, Hyung-Tae;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Recently the shortage of silicon resources especially for poly-silicon of purity higher than 99.9999% leads to search for the more cheap and quick synthesizing routes for silicon feedstock. In order to solve this situation, we investigated the purification process of metallurgical grade (MG) silicon of purity around 99% by the acid leaching and following the unidirectional solidification. MG-Si lumps are pulverized with a planetary mill, and then leached with HCl/$HNO_3$/HF acid solution. As a result, the concentration of metal impurities including Al, Fe, Ca, Mn, etc. decreased dramatically. This process led to silicon content higher than 99.99%. The purified silicon powders were compacted and have been melted and uni-directionally solidified with heat exchange method (HEM) furnace. The properties of multicrystalline silicon ingots were specific resistance of $0.3{\Omega}{\cdot}cm$ and minority carrier life time (MCLT) of $3.8{\mu}{\cdot}sec$.

Texturing of Multi-crystalline Silicon Using Isotropic Etching Solution (등방성 에칭용액을 이용한 다결정 실리콘의 표면조직화)

  • Eum, Jung-Hyun;Choi, Kwan-Young;Nahm, Sahn;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.685-688
    • /
    • 2009
  • Surface Texturing is very important process for high cell efficiency in crystalline silicon solar cell. Anisotropic texturing with an alkali etchant was known not to be able to produce uniform surface morphology in multi-crystalline silicon (mc-Si), because of its different etching rate with random crystal orientation. In order to reduce surface reflectance of mc-Si wafer, the general etching tendency was studied with HF/HN$O_3$/De-ionized Water acidic solution. And the surface structures of textured mc-Si in various HF/HN$O_3$ ratios were compared. The surface morphology and reflectance of textured silicon wafers were measured by FE-SEM and UVvisible spectrophotometer, respectively. We obtained average reflectance of $16{\sim}19$% for wavelength between 400 nm and 900 nm depending on different etching conditions.