• 제목/요약/키워드: IGBT OC fault

검색결과 2건 처리시간 0.018초

Zero-Current Phenomena Analysis of the Single IGBT Open Circuit Faults in Two-Level and Three-Level SVGs

  • Wang, Ke;Zhao, Hong-Lu;Tang, Yi;Zhang, Xiao;Zhang, Chuan-Jin
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.627-639
    • /
    • 2018
  • The fact that the reliability of IGBTs has become a more and more significant aspect of power converters has resulted in an increase in the research on the open circuit (OC) fault location of IGBTs. When an OC fault occurs, a zero-current phenomena exists and frequently appears, which can be found in a lot of the existing literature. In fact, fault variables have a very high correlation with the zero-current interval. In some cases, zero-current interval actually decides the most significant fault feature. However, very few of the previous studies really explain or prove the zero-current phenomena of the fault current. In this paper, the zero-current phenomena is explained and verified through mathematical derivation, based on two-level and three-level NPC static var generators (SVGs). Mathematical models of single OC fault are deduced and it is concluded that a zero-current interval with a certain length follows the OC faults for both two-level and NPC three-level SVGs. Both inductive and capacitive reactive power situations are considered. The unbalanced load situation is discussed. In addition, simulation and experimental results are presented to verify the correctness of the theoretical analysis.

IGBT Open-Circuit Fault Diagnosis for 3-Phase 4-Wire 3-Level Active Power Filters based on Voltage Error Correlation

  • Wang, Ke;Tang, Yi;Zhang, Xiao;Wang, Yang;Zhang, Chuan-Jin;Zhang, Hui
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1950-1963
    • /
    • 2016
  • A novel open-circuit fault diagnosis method for 3-phase 4-wire 3-level active power filters based on voltage error correlation is proposed in this paper. This method is based on observing the output pole voltage error of the active power filter through two kinds of algorithms. One algorithm is a voltage error analytical algorithm, which derives four output voltage error analytic expressions through the pulse state, current value and dc bus voltage, respectively, assuming that all of the IGBTs of a certain phase come to an OC fault. The other algorithm is a current circuit equation algorithm, which calculates the real-time output voltage error through basic circuit theory. A correlation is introduced to measure the similarity of the output voltage errors between the two algorithms, and OC faults are located by the maximum of the correlations. A FPGA has been chosen to implement the proposed method due to its fast prototyping. Simulation and experimental results are presented to show the performance of the proposed OC fault diagnosis method.