• Title/Summary/Keyword: ILSS

Search Result 53, Processing Time 0.02 seconds

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

Fabrication and Characteristics of CFRC(Carbon Firber Reinforced Carbon Composites) Fabricated with Carbon Fiber and Coal Tar Pitch Matrix (석탄계 핏치를 결합재로한 탄소/탄소 복합재의 제조 및 특징)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.194-205
    • /
    • 1994
  • In this research, we attempt to fabricate an excellent CFRC(Carbon Fiber Reinforced Carbon), which has good thermal and mechanical properties, with 8H/satin woven fabric prepreg, high modulus and high strength type continuous carbon fiber and raw coal tar pitch(RCTP) matrix or THF soluble fraction(THFSP) matrix which has good graphitizability. Green bodies were fabricated with hot press molding technique and CFRC samples were made after carbonization, impregnation, recarbonization and graphitization steps. For the purpose of characterization of the physical properties, SEM, polarized light microscope, TGA were observed, and tested flexural strength, modulus and ILSS. After heat treating the THFSP matrix up to $2300^{\circ}C$, the value of $C_0$/2 was 3.380$\AA$, which is analogous to the structure of natural graphite and the value of 2$\theta$ is $26.276^{\circ}$ approached to the Bragg's angle of natural graphite. As a result of TGA to test the high temperature air oxidation, the THFSP matrix, graphitized up to $2300^{\circ}C$, exhibited the best air oxidation resistance. And mechanical properties were increased up to 65~70% as fiber volume fraction increased. Because of the good orientation graphitizability, the fracture surface of THFSP matrix CFRC is very good.

  • PDF

Evaluation of the Change in Adhesion Strength of GFRP and CFRP with Carbon Nanotube Contents in Epoxy Adhesive with Moisture Change during Curing (에폭시 접착제의 탄소나노튜브 함량과 경화시 습도 변화에 따른 GFRP 및 CFRP의 접착강도 변화 평가)

  • Park, Hee-Woong;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • As the wind blades become larger, they tend to be made by mixing glass fiber and carbon fiber, and it is important to increase the properties of the adhesive which adheres the two materials. The physical properties of the adhesive vary depending on the content of the additive and curing conditions. In this study, the change in adhesion strength with the difference between the CNT (Carbon Nanotube) content of the epoxy adhesive and the humidity during curing was evaluated. GFRP and CFRP specimens were prepared and adhered using an epoxy adhesive, and to examine changes in characteristics with carbon nanotube contents and with the humidity during curing of the epoxy adhesive, adhesion strength was evaluated by dividing the difference between carbon nanotube content and humidity. To find out the change with the CNT contents, the intelaminar shear strength (ILSS) test was performed by dividing the contents of the CNT into 0, 0.1, 0.3, 0.5, and 1 wt%, and to confirm the change with the humidity conditions, the adhesive was cured by dividing the humidity by 20, 50, and 80%. From the result of the experiment, the adhesive force decreased when the content was excessively large, although the adhesive property was enhanced by adding CNT to the epoxy adhesive. In addition, it was confirmed that the adhesion characteristics were not changed as the humidity increased.