• Title/Summary/Keyword: ISB panel

Search Result 22, Processing Time 0.033 seconds

Investigation into characteristics of bending stiffness and failure for ISB panel (ISB 판넬의 굽힘강성 및 파단특성에 관한 연구)

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1274-1277
    • /
    • 2004
  • The objective of this research work is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a pyramid shape and woven metal are employed as an internally structured material. In order to investigate the characteristics, the specific stiffness and failure map are estimated using the results of three-points bending test. From the results of the experiment, the influence of design parameters of ISB panel on the specific stiffness and failure mode has been found. In addition, it has been shown that ISB panel with expanded metal is prefer to that with woven metal from the view point of optimal design for ISB panel.

  • PDF

Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel (ISB 판넬의 굽힘강성 및 파손특성에 관한 연구)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Han Gil-Young;Jung Chang-Gyun;Yang Bong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.

Bending characteristics of ISB panel with dimple shapes as inner structures (딤플형 내부 구조체를 가진 ISB 판넬의 굽힘 강성 특성)

  • Ahn D.G.;Lee S.H.;Kim J.S.;Moon G.J.;Han G.Y.;Jung C.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.117-118
    • /
    • 2006
  • The objective of this paper is to investigate into bending and failure characteristics of ISB panel with dimple shapes as inner structures. Through three-points bending test, the force-displacement curve and the failure shape are obtained to examine the deformation pattern, characteristic data including maximum load and displacement at the maximum load and failure pattern for the ISB panel. In addition, the influence of design parameters for ISB panel on the bending stiffness and failure mode has been found. From the results of the experiments, it has been shown that bending and failure characteristics of the ISB panel can be controlled by the ratio of radius and the direction of the material.

  • PDF

Investigation into static characteristics of ISB panels with the pyramidal structure as a internally structured material (내부에 피라미드 구조를 가지는 ISB 판넬의 정적 특성 분석)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Hahn Gil-Young;Kim Jin-Suk;Jung Chang-Gyun;Yang Dong-Yol
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.354-359
    • /
    • 2005
  • The objective of this research work is to investigate into static characteristics of ISB panels with the pyramidal structure as a internally structured material. In order to investigate the behavior of material deformation and fracture characteristics, several tensile tests have been carried out for the ISB panel and skin sheet. Through the results of the experiments, the mechanical properties of ISB panel and skin sheet and fracture characteristics have been obtained. In addition, the mechanical properties of the ISB panel have been compared with that of the skin sheet by the view point of a specific modulus, a specific yield strength and a specific strength. From the results of the comparision, it has been shown that the ISB panel has an excellent static characteristics.

  • PDF

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가)

  • 정창균;윤석준;성대용;양동열;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

Investigation into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material (익스펜디드 금속을 내부 구조체로 가지는 ISB 판넬의 정적.동적 특성 분석)

  • Ahn D.G.;Lee S.H.;Kim M.S.;Hahn G.Y.;Jung C.G.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.832-835
    • /
    • 2005
  • The objective of this research work is to investigate into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material. In order to investigate static and dynamic characteristics of ISB panels, several experiments, the tensile test, three-point bending test and impact test, are carried out. From the results of the experiments, the mechanical properties, bending stiffness and impact absorption energy of the ISB panel have been obtained. In addition, it has been shown that the static and dynamic characteristics of ISB panel are highly dependent on the crimping angle of the pyramidal structure for the expanded metal.

  • PDF

Estimation of Young's and Shear Moduli of a Core in ISB Panel with Woven Metal as Inner Structures (망형 직조 금속을 내부구조체로 가진 ISB 판재의 심재 종탄성 및 전단 계수 예측)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.116-123
    • /
    • 2009
  • The elastic properties of core affect mechanical properties and deformation behaviours of the lightweight sandwich panel. The objective of the present paper is to estimate experimentally Young's and shear moduli of a core in internally structured boned (ISB) panel with woven metal as inner structures using the deflection theory of sandwich beam considered core stiffness. Three points bending experiments were performed to obtain force-deflection curves of the designed ISB panel in each material direction. The elastic and shear moduli of the core in each material direction were estimated from slopes and intercepts of relationships between compliance per the span length and square of the span length, respectively. The results of the estimation showed that the fabric technology of the woven metal affects the variation of the elastic properties in the core. Through the comparison of shear moduli and force-deflection curves of the proposed method and those without considering the core stiffness, it was shown that the core stiffness should be considered to estimate properly the Young's and shear moduli of ISB panels. Finally, the contribution ratio of bending and shear deflections of ISB panels to the total deflection was quantitatively examined.

Basic Study in Fabrication and Mechanical Characteristics of Ultra Light Inner Structured and Bonded(ISB) Panel Containing Perpendicularly Woven Metal (수직방향 직조 금속망을 이용한 초경량 금속 내부구조 접합판재의 제작 및 특성에 관한 기초 연구)

  • Jung Chang Gyun;Yoon Seok-Joon;Yang Dong-Yol;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.152-158
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, due to their dimensional shape of metal between a pair of metal skin sheets or face sheets. Previous works showed that ISB panels containing inner structures formed as repeated pyramidal shapes saved weight up to $60\%$ in condition of same stiffness comparing with solid sheet. In this work, woven metal is adapted to inner structures replacing pyramidal structures. The test specimens of ISB panel containing woven metal made by multi-point electric resistance welding and 3-point bending test have been carried out. The results of experiments and comparisons of process parameters, stiffness and failure mode are discussed.

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 형상의 내부구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 정적 굽힘실험)

  • Jung Chang Gyun;Yoon Seok-Joon;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.175-182
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.