• Title/Summary/Keyword: ITO %28Indium Tin Oxide%29

Search Result 2, Processing Time 0.019 seconds

Chromaticity (b*) and Transmittance of ITO Thin Films Deposited on PET Substrate by Using Roll-to-Roll Sputter System (롤투롤 스퍼터를 이용하여 PET 기판 위에 제조된 ITO 박막의 색도(b*) 및 투과도 연구)

  • Seo, Sung-Man;Kang, Bo-Gab;Kim, Hu-Sik;Lim, Woo-Taik;Choi, Sik-Young
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.376-381
    • /
    • 2009
  • Indium Tin Oxide (ITO) thin films on Polyethylene Terephtalate (PET) substrate were prepared by Roll-to-Roll sputter system with targets of 5 wt% and 10 wt% $SnO_2$ at room temperature. The influence of the chromaticity (b*) and transmittance properties of the ITO Films were investigated. The ITO thin films were deposited as a function of the DC power, rolling speed, and Ar/$O_2$ gas flow ratio, and then characterized by spectrophotometer. Their crystallinity and surface resistance were also analyzed by X-ray diffractometer and 4-point probe. As a result, the chromaticity (b*) and transmittance of the ITO films were broadly dependent on the thickness, which was controlled by the rolling speed. When the ITO films were prepared with the DC power of 300 W and the Ar/$O_2$ gas flow ratio of 30/1 sccm using 10 wt% $SnO_2$ target as a function of the rolling speeds 0.01 through 0.10 m/min, its chromaticity (b*) and transmittance were about -4.01 to 11.28 and 75.76 to 86.60%, respectively. In addition, when the ITO films were deposited with the DC power of 400W and the Ar/$O_2$ gas flow ratio of 30/2 sccm used in 5 wt% $SnO_2$ target, its chromaticity (b*) and transmittance were about -2.98 to 14.22 and 74.29 to 88.52%, respectively.

Prototype Fabrication and Performance Evaluation of Metal-oxide Nanoparticle Sensor for Detecting of Hazardous and Noxious Substances Diluted in Sea Water (해수 중 유해위험물질 검출을 위한 금속산화물 나노 입자 센서의 시작품 제작 및 성능 평가)

  • Sangsu An;Changhan Lee;Jaeha Noh;Youngji Cho;Jiho Chang;Sangtae Lee;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.23-29
    • /
    • 2022
  • To detect harmful chemical substances in seawater, we fabricated a prototype sensor and evaluated its performance. The prototype sensor consisted of a detector, housing, and driving circuit. We built the detector by printing an Indium-Tin-Oxide (ITO) nanoparticle film on a flexible substrate, and it had two detection parts for simultaneous detection of temperature and HNS concentration. The housing connected the detector and the driving circuit and was made of Teflon material to prevent chemical reactions that may affect sensor performance. The driving circuit supplied electric power, and display measured data using a bridge circuit and an Arduino board. We evaluated the sensor performances such as response (ΔR), the limit of detection (LOD), response time, and errors to confirm the specification.