• 제목/요약/키워드: Illumina Porcine 60K SNP Beadchip

검색결과 4건 처리시간 0.019초

QTL Scan for Meat Quality Traits Using High-density SNP Chip Analysis in Cross between Korean Native Pig and Yorkshire

  • Kim, S.W.;Li, X.P.;Lee, Y.M.;Choi, Y.I.;Cho, B.W.;Choi, B.H.;Kim, T.H.;Kim, J.J.;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권9호
    • /
    • pp.1184-1191
    • /
    • 2011
  • We attempted to generate a linkage map using Illumina Porcine 60K SNP Beadchip genotypes of the $F_2$ offspring from Korean native pig (KNP) crossed with Yorkshire (YS) pig, and to identify quantitative trait loci (QTL) using the line-cross model. Among the genotype information of the 62,136 SNPs obtained from the high-density SNP analysis, 45,308 SNPs were used to select informative markers with allelic frequencies >0.7 between the KNP (n = 16) and YS (n = 8) F0 animals. Of the selected SNP markers, a final set of 500 SNPs with polymorphic information contents (PIC) values of >0.300 in the $F_2$ groups (n = 252) was used for detection of thirty meat quality-related QTL on chromosomes at the 5% significance level and 10 QTL at the 1% significance level. The QTL for crude protein were detected on SSC2, SSC3, SSC6, SSC9 and SSC12; for intramuscular fat and marbling on SSC2, SSC8, SSC12, SSC14 and SSC18; meat color measurements on SSC1, SSC3, SSC4, SSC5, SSC6, SSC10, SSC11, SSC12, SSC16 and SSC18; water content related measurements in pork were detected on SSC4, SSC6, SSC7, SSC10, SSC12 and SSC14. Additional QTL of pork quality traits such as texture, tenderness and pH were detected on SSC6, SSC12, SSC13 and SSC16. The most important chromosomal region of superior pork quality in KNP compared to YS was identified on SSC12. Our results demonstrated that a QTL linkage map of the $F_2$ design in the pig breed can be generated with a selected data set of high density SNP genotypes. The QTL regions detected in this study will provide useful information for identifying genetic factors related to better pork quality in KNP.

A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Blood Components (Immunity) in a Cross between Korean Native Pig and Yorkshire

  • Lee, Y.M.;Alam, M.;Choi, B.H.;Kim, K.S.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권12호
    • /
    • pp.1674-1680
    • /
    • 2012
  • The purpose of this study was to detect significant SNPs for blood components that were related to immunity using high single nucleotide polymorphism (SNP) density panels in a Korean native pig (KNP)${\times}$Yorkshire (YK) cross population. A reciprocal design of KNP${\times}$YK produced 249 $F_2$ individuals that were genotyped for a total of 46,865 available SNPs in the Illumina porcine 60K beadchip. To perform whole genome association analysis (WGA), phenotypes were regressed on each SNP under a simple linear regression model after adjustment for sex and slaughter age. To set up a significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were determined using a stepwise regression procedure with the rates of inclusion and exclusion of each SNP out of the model at 0.001 level. A total of 54 SNPs were detected; 10, 6, 4, 4, 5, 4, 5, 10, and 6 SNPs for neutrophil, lymphocyte, monocyte, eosinophil, basophil, atypical lymph, immuno-globulin, insulin, and insulin-like growth factor-I, respectively. Each set of significant SNPs per trait explained 24 to 42% of phenotypic variance. Several pleiotropic SNPs were detected on SSCs 4, 13, 14 and 15.

Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F2 intercross population

  • Ji, Jiuxiu;Zhou, Lisheng;Guo, Yuanmei;Huang, Lusheng;Ma, Junwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권8호
    • /
    • pp.1066-1073
    • /
    • 2017
  • Objective: Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods: A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White $Duroc{\times}Erhualian$ $F_2$ intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results: In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level ($5{\times}10^{-4}$), three QTLs exceeded the genome-wide significance threshold ($1.15{\times}10^{-6}$). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion: The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes' role and further identifying causative variants underlying these loci.

Whole-genome association and genome partitioning revealed variants and explained heritability for total number of teats in a Yorkshire pig population

  • Uzzaman, Md. Rasel;Park, Jong-Eun;Lee, Kyung-Tai;Cho, Eun-Seok;Choi, Bong-Hwan;Kim, Tae-Hun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.473-479
    • /
    • 2018
  • Objective: The study was designed to perform a genome-wide association (GWA) and partitioning of genome using Illumina's PorcineSNP60 Beadchip in order to identify variants and determine the explained heritability for the total number of teats in Yorkshire pig. Methods: After screening with the following criteria: minor allele frequency, $MAF{\leq}0.01$; Hardy-Weinberg equilibrium, $HWE{\leq}0.000001$, a pair-wise genomic relationship matrix was produced using 42,953 single nucleotide polymorphisms (SNPs). A genome-wide mixed linear model-based association analysis (MLMA) was conducted. And for estimating the explained heritability with genome- or chromosome-wide SNPs the genetic relatedness estimation through maximum likelihood approach was used in our study. Results: The MLMA analysis and false discovery rate p-values identified three significant SNPs on two different chromosomes (rs81476910 and rs81405825 on SSC8; rs81332615 on SSC13) for total number of teats. Besides, we estimated that 30% of variance could be explained by all of the common SNPs on the autosomal chromosomes for the trait. The maximum amount of heritability obtained by partitioning the genome were $0.22{\pm}0.05$, $0.16{\pm}0.05$, $0.10{\pm}0.03$ and $0.08{\pm}0.03$ on SSC7, SSC13, SSC1, and SSC8, respectively. Of them, SSC7 explained the amount of estimated heritability along with a SNP (rs80805264) identified by genome-wide association studies at the empirical p value significance level of 2.35E-05 in our study. Interestingly, rs80805264 was found in a nearby quantitative trait loci (QTL) on SSC7 for the teat number trait as identified in a recent study. Moreover, all other significant SNPs were found within and/or close to some QTLs related to ovary weight, total number of born alive and age at puberty in pigs. Conclusion: The SNPs we identified unquestionably represent some of the important QTL regions as well as genes of interest in the genome for various physiological functions responsible for reproduction in pigs.