• Title/Summary/Keyword: Image Separation

Search Result 386, Processing Time 0.025 seconds

A Efficient Image Separation Scheme Using ICA with New Fast EM algorithm

  • Oh, Bum-Jin;Kim, Sung-Soo;Kang, Jee-Hye
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.623-629
    • /
    • 2004
  • In this paper, a Efficient method for the mixed image separation is presented using independent component analysis and the new fast expectation-maximization(EM) algorithm. In general, the independent component analysis (ICA) is one of the widely used statistical signal processing scheme in various applications. However, it has been known that ICA does not establish good performance in source separation by itself. So, Innovation process which is one of the methods that were employed in image separation using ICA, which produces improved the mixed image separation. Unfortunately, the innovation process needs long processing time compared with ICA or EM. Thus, in order to overcome this limitation, we proposed new method which combined ICA with the New fast EM algorithm instead of using the innovation process. Proposed method improves the performance and reduces the total processing time for the Image separation. We compared our proposed method with ICA combined with innovation process. The experimental results show the effectiveness of the proposed method by applying it to image separation problems.

CONSTRAINING COSMOLOGICAL PARAMETERS WITH IMAGE SEPARATION STATISTICS OF GRAVITATIONALLY LENSED SDSS QUASARS: MEAN IMAGE SEPARATION AND LIKELIHOOD INCORPORATING LENS GALAXY BRIGHTNESS

  • Han, Du-Hwan;Park, Myeong-Gu
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.83-92
    • /
    • 2015
  • Recent large scale surveys such as Sloan Digital Sky Survey have produced homogeneous samples of multiple-image gravitationally lensed quasars with well-defined selection effects. Statistical analysis on these can yield independent constraints on cosmological parameters. Here we use the image separation statistics of lensed quasars from Sloan Digital Sky Survey Quasar Lens Search (SQLS) to derive constraints on cosmological parameters. Our analysis does not require knowledge of the magnification bias, which can only be estimated from the detailed knowledge on the quasar luminosity function at all redshifts, and includes the consideration for the bias against small image separation quasars due to selection against faint lens galaxy in the follow-up observations for confirmation. We first use the mean image separation of the lensed quasars as a function of redshift to find that cosmological models with extreme curvature are inconsistent with observed lensed quasars. We then apply the maximum likelihood test to the statistical sample of 16 lensed quasars that have both measured redshift and magnitude of lens galaxy. The likelihood incorporates the probability that the observed image separation is realized given the luminosity of the lens galaxy in the same manner as Im et al. (1997). We find that the 95% confidence range for the cosmological constant (i.e., the vacuum energy density) is $0.72{\leq}{\Omega}_{\Lambda}{\leq}1.0$ for a flat universe. We also find that the equation of state parameter can be consistent with -1 as long as the matter density ${\Omega}_m{\leq}0.4$ (95% confidence range). We conclude that the image separation statistics incorporating the brightness of lens galaxies can provide robust constraints on the cosmological parameters.

The Characteristics of Separation Color Coordination In Current Women's Fashion collections of Paris, Milan, N.Y, London from 2004 SS - 2008 A W - centering on the types of color scheme, color harmony, separation color - (최신 여성 패션에 나타난 세퍼레이션 색채 코디네이션의 특성)

  • Kwon, Hae-Sook
    • Journal of Fashion Business
    • /
    • v.12 no.5
    • /
    • pp.94-110
    • /
    • 2008
  • The main objective of this research was to understand the characteristics of separation color coordination of contemporary female fashion through the analysis of 'pre-a-porter Collections' of four collections (i. e. cities) - Paris, Milan, New York, London - from the periods of 2004 S/S to 2008/9 A/W. The data collection of 265 was done by reviewing 'pre-a-porter Collections' magazine and total 265 observations were made. Statistical analysis of frequency and also qualitative interpretation of separation color coordination characteristics were completed. The main findings were; (1) In separation color coordination of contemporary women's fashion collections, there were three main types of color scheme which were classified into seven detailed categories of color combination. First was the achromatic color & one chromatic separation color scheme which was classified into four categories of - black & white, black & grey, white & grey, and grey & grey - color combination. Second was the chromatic colors & one achromatic separation color scheme which classified into two categories of achromatic & chromatic color & one achromatic separation color combination, and chromatic colors & one achromatic separation color combination. Third was chromatic colors and one chromatic separation color combination. (2) The achromatic colors and one chromatic separation color scheme showed two phases of reinforcing the strong and modern image, or softening the hard and dull image of achromatic color combination. In color schemes which used more than two chromatic colors, the separation color frequently converted the tedious and monotonous fashion image, which caused by identical or similarity in color or tone harmony, into more attractive and interesting. (3) In conclusion, through the various use and coordination of various color schemes, color harmony and separation colors, the separation color coordination in contemporary female fashion has been suggested the effective way of color combination which can lead the visual pleasure and the vitality along with the unity and the harmony. This characteristics can create various images and visual diversity for fashion. The types and the use of color scheme and separation color showed different trends in four collections.

Simple Image-Separation Method for Measuring Two-Phase Flow of Freely Rising Single Bubble (상승하는 단일 버블 이상유동의 PIV 계측을 위한 영상분리기법)

  • Park Sang-min;Jin Song-wan;Kim Won-tae;Sung Jae-yong;Yoo Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.7-10
    • /
    • 2002
  • A novel two-phase PIV algorithm using a single camera has been proposed, which introduces a method of image-separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background each have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent material. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. Moreover, in order to increase the SNR (signal-to-noise ratio) of the cross-correlation of tracer particle image, image enhancement is employed.

  • PDF

Multiple Mixed Modes: Single-Channel Blind Image Separation

  • Tiantian Yin;Yina Guo;Ningning Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.858-869
    • /
    • 2023
  • As one of the pivotal techniques of image restoration, single-channel blind source separation (SCBSS) is capable of converting a visual-only image into multi-source images. However, image degradation often results from multiple mixing methods. Therefore, this paper introduces an innovative SCBSS algorithm to effectively separate source images from a composite image in various mixed modes. The cornerstone of this approach is a novel triple generative adversarial network (TriGAN), designed based on dual learning principles. The TriGAN redefines the discriminator's function to optimize the separation process. Extensive experiments have demonstrated the algorithm's capability to distinctly separate source images from a composite image in diverse mixed modes and to facilitate effective image restoration. The effectiveness of the proposed method is quantitatively supported by achieving an average peak signal-to-noise ratio exceeding 30 dB, and the average structural similarity index surpassing 0.95 across multiple datasets.

Text line separation in handwritten address image using partial projection technique (부분 투영기법을 이용한 필기체 주소 영상에서의 문자열 분리)

  • 정선화;남윤석
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.31-34
    • /
    • 2003
  • In this paper, we describe a method for separating text lines in handwritten Korean address images. The most remarkable feature of the proposed method is to use a modified projection technique. named a partial projection technique. A projection based text line separation method which projects the whole address image in horizontal direction to find split points for text line separation cannot avoid failing separation in case of images with a little skew or overlap between vertically neighboring text lines. To overcome this problem, we have introduced a partial projection technique which splits an address image into a few partial address images to be equal width and then project them each horizontally. The experiment done with 989 handwritten Korean address images extracted from live mails shows the superiority of the proposed method. The correct text-line separation rate fir the testing images was about 91.5%.

  • PDF

Optical security system using multi-phase separation and phase-wrapping method (다중 위상 분할과 위상 랩핑 방법을 이용한 광 암호화 시스템)

  • Shin Chang Mok;Kim Soo Joong;Seo Dong Hoan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.31-38
    • /
    • 2005
  • In this paper, we proposed an optical security system based on a gray-image exclusive-OR encryption using multi-phase separation and phase-wrapping method. For encryption, a gray image is sliced into binary images, which have the same pixel value, and these images are encrypted by modified XOR rules with binary random images. The XORed images and the binary images respectively combined and converted into full phase images, called an encrypted image and a key image. For decryption, when the encrypted image and key image are used as inputs on optical elements, Practically due to limited controllability of phase range in optical elements, the original gray image cannot be efficiently reconstructed by these optical elements. Therefore, by decreasing the phase ranges of the encrypted image and key image using a phase-wrapping method and separating these images into low-level phase images using multi-phase separation, the gray image can be reconstructed by optical elements which have limited control range. The decrytion process is simply implemented by interfering a multiplication result of encrypted image and key image with reference light. The validity of proposed scheme is verified and the effects, which are caused by phase limitation in decryption process, is analyzed by using computer simulations.

Visual tracking based Discriminative Correlation Filter Using Target Separation and Detection

  • Lee, Jun-Haeng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.55-61
    • /
    • 2017
  • In this paper, we propose a novel tracking method using target separation and detection that are based on discriminative correlation filter (DCF), which is studied a lot recently. 'Retainability' is one of the most important factor of tracking. There are some factors making retainability of tracking worse. Especially, fast movement and occlusion of a target frequently occur in image data, and when it happens, it would make target lost. As a result, the tracking cannot be retained. For maintaining a robust tracking, in this paper, separation of a target is used so that normal tracking is maintained even though some part of a target is occluded. The detection algorithm is executed and find new location of the target when the target gets out of tracking range due to occlusion of whole part of a target or fast movement speed of a target. A variety of experiments with various image data sets are conducted. The algorithm proposed in this paper showed better performance than other conventional algorithms when fast movement and occlusion of a target occur.

Blind Image Separation with Neural Learning Based on Information Theory and Higher-order Statistics (신경회로망 ICA를 이용한 혼합영상신호의 분리)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1454-1463
    • /
    • 2008
  • Blind source separation by independent component analysis (ICA) has applied in signal processing, telecommunication, and image processing to recover unknown original source signals from mutually independent observation signals. Neural networks are learned to estimate the original signals by unsupervised learning algorithm. Because the outputs of the neural networks which yield original source signals are mutually independent, then mutual information is zero. This is equivalent to minimizing the Kullback-Leibler convergence between probability density function and the corresponding factorial distribution of the output in neural networks. In this paper, we present a learning algorithm using information theory and higher order statistics to solve problem of blind source separation. For computer simulation two deterministic signals and a Gaussian noise are used as original source signals. We also test the proposed algorithm by applying it to several discrete images.

A study on structure and separation orientation of fiber-reinforced thermoplastic sheet (섬유강화 플라스틱 복합판의 구조와 분리.배향에 관한 연구)

  • Lee, Dong-Gi;Cho, Kwang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.104-113
    • /
    • 1993
  • Characteristics of fiber-reinforced thermoplastic sheet depend on the quantity and shape of fibers. During a molding process of composites, the fiber-maxtrix separation and fober orientation are caused by the flow during the molding process. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation-orientation and molding conditions. The correlation between the separation and the orientation have to be clarified for designing the fiber structure. In this paper, the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is defined and measured by the image processing using soft X-rayed photograph and image scammer. Correlation between the degree of nonhomogeneity and the orientation function is discussed.

  • PDF