• Title/Summary/Keyword: Imaging spectrometer

Search Result 142, Processing Time 0.035 seconds

STSAT-3 Operations Concept (과학기술위성 3호 운영개념)

  • Lee, Seung-Hun;Park, Jong-Oh;Rhee, Seung-Wu;Jung, Tae-Jin;Lee, Dae-Hee;Lee, Joon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 2011
  • The Science and Technology Satellite-3 (STSAT-3) is based on the KITSAT-1, 2, 3 and STSAT-1, 2 which were Korea micro-satellites for the mission of space and earth science. The objectives of the STSAT-3 are to support earth and space sciences in parallel with the demonstration of spacecraft technology. The STSAT-3 carries an infrared (IR) camera for space & earth observation and an imaging spectrometer for earth observation. The IR payload instrument of the STSAT-3, Multi-purpose Infrared Imaging System (MIRIS), will observe the Galactic plane and North/South Ecliptic poles to research the origin of universe. The secondary payload instrument, Compact Imaging Spectrometer (COMIS), images the Earth's surface. The data acquired from COMIS are expected to be used for various application fields such as monitoring of disaster management, water quality studies, and farmland assessment. In this paper we present the operations concept of STSAT-3 which will be launched into a sun-synchronous orbit at a nominal altitude of 600km in late 2012.

INTERNATIONAL COOPERATION OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 국제 공동 연구)

  • Lee, D.H.;Nam, U.W.;Lee, S.;Jin, H.;Yuk, I.S.;Kim, K.H.;Pak, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.21-26
    • /
    • 2006
  • A Korean team (Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Kyung Hee University) takes part in an international cooperation project called CIBER (Cosmic Infrared Background ExpeRiment), which has begun with Jet Propulsion Laboratory (JPL) in USA and Institute of Space and Astronautical Science (ISAS) in Japan. CIBER is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The Korean team is in charge of the ground support electronics and manufacturing of optical parts of the narrow-band spectrometer, which will provide excellent opportunities for science and technology to Korean infrared groups.

Construction of a Ginsenoside Content-predicting Model based on Hyperspectral Imaging

  • Ning, Xiao Feng;Gong, Yuan Juan;Chen, Yong Liang;Li, Hongbo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.369-378
    • /
    • 2018
  • Purpose: The aim of this study was to construct a saponin content-predicting model using shortwave infrared imaging spectroscopy. Methods: The experiment used a shortwave imaging spectrometer and ENVI spectral acquisition software sampling a spectrum of 910 nm-2500 nm. The corresponding preprocessing and mathematical modeling analysis was performed by Unscrambler 9.7 software to establish a ginsenoside nondestructive spectral testing prediction model. Results: The optimal preprocessing method was determined to be a standard normal variable transformation combined with the second-order differential method. The coefficient of determination, $R^2$, of the mathematical model established by the partial least squares method was found to be 0.9999, while the root mean squared error of prediction, RMSEP, was found to be 0.0043, and root mean squared error of calibration, RMSEC, was 0.0041. The residuals of the majority of the samples used for the prediction were between ${\pm}1$. Conclusion: The experiment showed that the predicted model featured a high correlation with real values and a good prediction result, such that this technique can be appropriately applied for the nondestructive testing of ginseng quality.

Near-Infrared Imaging Spectrometer onboard NEXTSat-1

  • Jeong, Woong-Seob;Lee, Dae Hee;Moon, Bongkon;Park, Kwijong;Park, Sung-Joon;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Kim, Mingyu;Lee, Duk-Hang;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2013
  • New space program for "Next-Generation Small Satellite (NEXTSat)" launched last year after the success of the series of Science & Technology Satellite (STSAT). KASI proposed the near-infrared imaging spectrometer as a scientific payload onboard NEXTSat-1. It was selected as one of two scientific payloads. The approved scientific payload is the near-infrared imaging spectrometer for the study of star formation history (NISS). The efficient near-infrared observation can be performed in space by evading the atmospheric emission as well as other thermal noise. The observation of cosmic near-infrared background enables us to reveal the early Universe in an indirect way through the measurement of absolute brightness and spatial fluctuation. The detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions give us less biased information on the star formation. In addition, the NISS will be expected to demonstrate our technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

Electronics Design of the NISS onboard NEXTSat-1

  • Lee, Dae-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2015
  • NISS is a unique spaceborne imaging spectrometer (R = 20) onboard the Korea's next micro-satellite NEXTSat-1 to investigate the star formation history of Universe in near infrared wavelength region (0.9 - 3.8 um), with a customized H1RG IR sensor(Jeong 2014). In this paper, we will introduce the compact electronics system (Fig. 1) as well as the novel readout method to reduce the 1/f noise for NISS.

  • PDF

Development of a Plasma Training Lab kart: System Setup and Numerical Simulation

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.195-200
    • /
    • 2017
  • A mobile lab kart for plasma training is developed with a high vacuum pumping system, vacuum gauges and a glass discharge tube powered by a high voltage transformer connected to a household 60 Hz line. A numerical model is developed by using a commercial multiphysics software package, CFD-ACE+ to analyze the experimental data. Simulations for argon and nitrogen were carried out to provide fundamental discharge characteristics. Variations of the kart configuration were demonstrated: a glass tube with three electric probes, optical emission spectrometer attachment and infra red thermal imaging system to give more detailed analysis of the discharge characteristics.

PHYSICS REVEALED BY BROAD-RANGE CO LADDERS AND FINE-STRUCTURE LINES IN M83

  • Wu, Ronin
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.147-149
    • /
    • 2017
  • Since the launch of the Herschel Space Observatory, our understanding about the photo-dissociation regions (PDR) has taken a step forward. In the bandwidth of the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) on board Herschel, ten CO rotational transitions, including J = 4 - 3 to J = 13 - 12, and three fine structure lines, including [$C{\small{I}}$] 609, [$C{\small{I}}$] 370, and [$N{\small{II}}$] $205{\mu}m$, are covered. I present our findings from the FTS observations at the nuclear region of M83, based on the spatially resolved physical parameters derived from the CO spectral line energy distribution (SLED) map and the comparisons with the dust properties and star-formation tracers. This article discusses (1) the potential of using [$N{\small{II}$] 205 and [$C{\small{I}}$] $370{\mu}m$ as star-formation tracers; (2) the excitation mechanisms of warm CO in the nuclear region of M83.

A Study on Property of Microstructuree for Ba System of Perovskite Structure (페로브스카이형 Ba계열의 미세구조 특성)

  • Song, Min-Jong;Dong, Kyung-Rae;Kim, Chang-Bok;Choi, Seong-Kwan;Park, Yong-Soon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.4
    • /
    • pp.185-189
    • /
    • 2011
  • To assess the prevalence of various radiological reduction methods for childhood intussusception in training hospitals by means of a nationwide phone survey, and to demonstrate recent trends in this area by comparing the findings with those obtained in a survey conducted. $BaTiO_3$ system was prepared by using fabrication of classical conditioning ceramics. Polycrystalline and surface structure characteristics of the specimens were measured by X-ray diffraction, SEM(Scanning Electron Microscopy) and EDAX (Energy Dispersive Spectrometer), respectively.

  • PDF