• Title/Summary/Keyword: Immersive Visualization

Search Result 47, Processing Time 0.027 seconds

Users' Design Process in Immersive Environments (몰입형 환경에서의 사용자 디자인 과정에 관한 연구)

  • Cho, Myung Eun;Kim, MI Jeong
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.2
    • /
    • pp.64-71
    • /
    • 2017
  • The purpose of this study is to investigate the potential of immersive environments in the design domain by analyzing students' design process in immersive environments from cognitive and experiential aspects. To do this, we reviewed major concepts and theories such as users' immersion, participation, presence, and awareness and developed a comprehensive conceptual framework of immersive shared environments. In three different visualization systems of HIVE, teams consisting two students were assigned to design tasks and the design process was analyzed by a customized framework. The characteristics of the immersive environment related to the performance of the design task were different from those of the previous studies. The perception of the relationship between the spaces is very important, and the perception of the surrounding objects is interested in the shape or the material such as whether the object is flat or inclined. Also, it is found that the multi-technology of immersive environments is very useful for creative collaboration. In the future, a more comprehensive analysis of the effects on design decisions in a more diverse visual interface condition and the effects on more diverse design areas should be added.

Gadget Arms: Interactive Data Visualization using Hand Gesture in Extended Reality (가젯암: 확장현실을 위한 손 제스처 기반 대화형 데이터 시각화 시스템)

  • Choi, JunYoung;Jeong, HaeJin;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.2
    • /
    • pp.31-41
    • /
    • 2019
  • Extended Reality (XR), such as virtual and augmented reality, has huge potential for immersive data visualization and analysis. In XR, users can interact with data and other users realistically by navigating the shared virtual space, allowing for more intuitive data analysis. However, creating a visualization in XR also poses a challenge because complicated, low-level programming is required, which hinders broad adaptation in visual analytics. This paper proposes an interactive visualization authoring tool based on hand gesture for immersive data visualization-Gadget Arms. The proposed system provides a novel user interaction to create and place visualization in the 3D virtual world. This simple, but intuitive, user interaction enables user designs the entire visualization space in the XR without using a host computer and low-level programming. Our user study also confirmed that the proposed user interaction significantly improves the usability of the visualization authoring tool.

A Comparative Analysis of User Experience in Home Energy Saving Awareness Using Immersive Virtual Reality and Mobile Augmented Reality (몰입형 가상현실과 모바일 증강현실을 활용한 가정내 에너지절약 인지 경험 비교 연구)

  • Choi, Sung Ho;Lee, Myoung Hun;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.397-408
    • /
    • 2016
  • VR and AR are widely used in many applications to provide more immersive visualization and natural interaction for learning and experiencing virtual but realistic tasks. Energy saving is considered as one of the most important issues throughout the world in order to overcome global warming and energy crisis. In particular, the awareness of home energy saving is regarded as a first step to deal with this issue. In this paper, we suggest a new learning environment using virtual and augmented reality (VR/AR) for home energy saving experience. In particular, it presents a comparative study of the user experience in home energy awareness using immersive virtual reality and mobile augmented reality. The first person user experience using immersive VR wearing head mounted display (HMD) and the third person user experience using mobile AR are implemented and systematically compared with each other in terms of the learning effect of energy saving and qualitative usability. Implementation results will be given to show the advantage and effectiveness of the proposed approach.

Design and Implementation of Multichannel Visualization Module on PC Cluster for Virtual Manufacturing (가상 공장 시뮬레이션을 위한 PC 클러스터 기반의 멀티채널 가시화 모듈의 설계와 구현)

  • Kim Yong-Sik;Han Soon-Hung;Yang Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.231-240
    • /
    • 2006
  • Immersive virtual reality (VR) for the manufacturing planning helps to shorten the planning times as well as to improve the quality of planning results. However, VR equipment is expensive, both in terms of development efforts and device. Engineers also spend time to manually repair erroneous 3-D shape because of imperfect translation between 3-D engineering CAD model and VR system format. In this paper a method is proposed to link 3-D engineering CAD model to a multichannel visualization system with PC clusters. The multichannel visualization module enables distributed computing for PC clusters, which can reduce the cost of VR experience while offering high performance. Each PC in a cluster renders a particular viewpoint of a scene. Scenes are synchronized by reading parameters from the master scene control module and passing them to client scenes.

Development of a CAVE type Virtual Reality System for 3-D Spatial Data Visualization (3차원 공간 자료 시각화를 위한 CAVE 형 가상현실 시스템 구축)

  • Lee, Kwan-Woo;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.117-120
    • /
    • 2004
  • Immersive virtual reality provides an effective way of visualizing and analyzing various spatial data, such as wireline logs, three-dimensional seismic, and interpreted geologic boundaries, and etc. Although it is a valuable tool for oil and gas exploration, its usage has been limited to a specific area because of its high development costs. This paper describes the development of an immersive virtual reality system, known as CAVE (Cave Automatic Virtual Environment) that maximizes immersiveness with reasonable prices by using general purpose PC and projectors.

CONTROL OF A 3-DIMENSIONAL POSTPROCESSING SOFTWARE USING DATA GLOVES FOR IMMERSIVE ENVIRONMENT (몰입 환경을 위한 3차원 데이터 후처리 소프트웨어의 데이터 글로브에 의한 제어 구현)

  • Kim K.Y.;Kim B.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.56-61
    • /
    • 2006
  • As the size and dimension of target problems in the field of computational engineering including CFD gets bigger and higher, it is needed to have more efficient and flexible data visualization environment in terms of software and hardware. Even though it is still manageable to use a mouse in controlling 3-dimensional data visualization, it would be beneficial to use 3-D input device for 3-D visualization. 'Data Glove' is one of the best 3-D input devices, because human hands are best tools for understanding 3-D space and manipulating 3-D objects. Signals coming from 'Data Glove' are analog and very sensitive to finger motions, therefore signal filtering using a digital filter is applied. This paper describes our experience and benefits of using data gloves in controlling 3-dimensional postprocessing softwares.

Resolving Hand Region Occlusion in Tangible Augmented Reality Envrionments (감각형 증강현실 환경에서의 손 가림 현상 해결 방안)

  • Moon, Hee-Cheol;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.277-284
    • /
    • 2011
  • In tangible augmented reality (AR) environments for virtual prototyping, the user interacts with virtual products by manipulating tangible objects with his or her hands, but the user often encounter awkward situations in which his or her hands are occluded by augmented virtual objects, which reduces both immersion and ease of interaction. In this paper, we present how to resolve such hand region occlusion in order to enhance natural interaction and immersive visualization. In the AR environment considered, we use two types (product-type and pointer-type) of tangible objects for tangible user interaction with a virtual product of interest. Holding the tangible objects with his or her hands, the user can create input events by touching specified regions of the product-type tangible object with the pointer-type tangible object. We developed a method for resolving hand region occlusion frequently arising during such user interaction, It first detect hand region in a real image and refines the rendered image of the virtual object by subtracting the hand region from the rendered image, Then, it superimposes the refined image onto the real image to obtain an image in which the occlusion is resolved. Incorporated into tangible AR interaction for virtual prototyping of handheld products such as cellular phones and MP3 players, the method has been found by a preliminary user study that it is not only useful to improve natural interaction and immersive visualization of virtual products, but also helpful for making the users experience the products' shapes and functions better.

3D Graphics Visualization and Context Information Service for a Virtual Tourist System

  • Nguyen, Congdu;Le, Minh Tuan;Yoon, Dae-Il;Kim, Hae-Kwang
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • In this paper, we present a virtual tourist system with realtime 3D visualization and the assistance of context information service. Our system enables a visitor to take a discovering tour on a virtual environment from a remote client by following navigator or by self-navigating. During the tour, the system provides immersive 3D graphics contents while supporting relevant information to the visitors corresponding to their positions in the virtual environment. When the visitors interact with interested objects, the context information service will also support introduction information for presenting about the objects. The introduction information based on text format is represented by a comfortable way-audio conversion to visitors in different languages depended on their preferences using TTS(Text-To-Speak) tool.

  • PDF

A Smartphone-based Virtual Reality Visualization System for Human Activities Classification

  • Lomaliza, Jean-Pierre;Moon, Kwang-Seok;Park, Hanhoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.45-46
    • /
    • 2018
  • This paper focuses on human activities monitoring problem using onboard smartphone sensors as data generator. Monitoring such activities can be very important to detect anomalies and prevent disease from patients. Machine learning (ML) algorithms appear to be ideal approaches to use for processing data from smartphone to get sense of how to classify human activities. ML algorithms depend on quality, the quantity and even more important, the properties or features, that can be learnt from data. This paper proposes a mobile virtual reality visualization system that helps to view data representation in a very immersive way so that its quality and discriminative characteristics may be evaluated and improved. The proposed system comes as well with a handy data collecting application that can be accessed directly by the VR visualization part.

  • PDF

Voxel-wise UV parameterization and view-dependent texture synthesis for immersive rendering of truncated signed distance field scene model

  • Kim, Soowoong;Kang, Jungwon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • In this paper, we introduced a novel voxel-wise UV parameterization and view-dependent texture synthesis for the immersive rendering of a truncated signed distance field (TSDF) scene model. The proposed UV parameterization delegates a precomputed UV map to each voxel using the UV map lookup table and consequently, enabling efficient and high-quality texture mapping without a complex process. By leveraging the convenient UV parameterization, our view-dependent texture synthesis method extracts a set of local texture maps for each voxel from the multiview color images and separates them into a single view-independent diffuse map and a set of weight coefficients for an orthogonal specular map basis. Furthermore, the view-dependent specular maps for an arbitrary view are estimated by combining the specular weights of each source view using the location of the arbitrary and source viewpoints to generate the view-dependent textures for arbitrary views. The experimental results demonstrate that the proposed method effectively synthesizes texture for an arbitrary view, thereby enabling the visualization of view-dependent effects, such as specularity and mirror reflection.