• Title/Summary/Keyword: Immune response

Search Result 2,165, Processing Time 0.028 seconds

Immuno stimulatory activities of Samul-tang, Sagunja-tang, Pamul-tang and Sipjeondaebo-tang in vitro (사물탕, 사군자탕, 팔물탕, 십전대보탕의 약리 활성 비교 연구)

  • Lee, Ho-Young;Ha, Hye-Kyung;Jung, Da-Young;Lee, Nam-Hun;Shin, Hyeun-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.4
    • /
    • pp.41-51
    • /
    • 2010
  • Objectives : Samul-tang(SM). Sagunja-tang(SG). Pamul-tang(PM) and Sipjeondaebo-tang(SJ) was used many diseases such as sterility. menstrual disorder. general prostration. recruitment in Korea. We investigated the immune stimulatory activities of SG. SM. PM and SJ in in vitro. Methods: For comparision for effective of SM. SG. PM and SJ. this study examined anti-inflammation(NO. PGE2 assay). anti-oxidation(DPPH assay) and immune response in in vitro assay. For immune response activities. this study used NO synthesis on RAW 264.7 cells, splenocyte proliferation and cytokine assay(IL-2, IL-4) in splenocyte. Results: The results showed that SG. SM. PM and SJ were no significant effect anti-oxidation and anti-inflammatory effects. For immune response. they showed the splenocyte proliferation and macrophage proliferation. We confirmed that they synthesised NO a dose-dependent manner significantly and secreted the IL-4. Conclusions : These results suggested the SG, SM, PM and SJ had immune stimulatory activity. A efficacy of immune response in them had produced similar results.

Epstein-Barr Virus-Associated Gastric Carcinoma and Specific Features of the Accompanying Immune Response

  • Cho, Junhun;Kang, Myung-Soo;Kim, Kyoung-Mee
    • Journal of Gastric Cancer
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is one of the four subtypes of gastric carcinoma (GC), as defined by the novel classification recently proposed by The Cancer Genome Atlas. EBVaGC has several clinicopathological features such as longer survival and higher frequency of lymphoepithelioma-like carcinoma (LELC) and carcinoma with Crohn's disease-like lymphoid reaction that distinguish it from EBV-negative GC. The intensity and pattern of host cellular immune response in GC have been found to significantly correlate with the prognosis of patients with GC, suggesting that immune reaction and tumor microenvironment have critical roles in the progression of GC, and in particular, EBVaGC. Here, we reviewed the cellular and molecular mechanisms underlying prominent immune reactions in patients with EBVaGC. In EBVaGC, deregulation of the expression of immune response-related genes promotes marked intra-or peritumoral immune cell infiltration. The expression of programmed death receptor-ligand 1 is known to be increased in EBVaGC, and therefore, it has been proposed as a favorable prognostic factor for patients with EBVaGC, albeit some data supporting this claim are controversial. Overall, the underlying mechanisms and clinical significance of the host cellular immune response in patients with EBVaGC have not been thoroughly elucidated. Therefore, further research is necessary to better understand the role of tumor microenvironment in EBVaGC.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

Effect of Dietary Brown Seaweed Levels on the Antioxidant System in Broiler Chicks Activated Innate Immune Response (미역의 급여 수준이 타고난 면역반응이 활성화한 육계병아리의 혈액 항산화 균형에 미치는 영향)

  • Lee, H.J.;Park, I.K.;Im, J.T.;Choi, D.Y.;Choi, C.J.;Choi, J.B.;Lee, H.G.;Choi, Y.J.;Koh, T.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2005
  • Effect of dietary brown seaweed(Undaria pinnatifida) levels on the anti-oxidant enzyme system was evaluated in blood of broiler chicks activated innate immune response. Day-old broiler chicks were fed diets containing 0.0(basal), 1.0, 2.0 and 4.0 % of brown seaweed for 4 weeks. The innate immune response was activated by injecting Salmonella typhymurium lipopolysaccharide(LPS) i.p. at 8, 10 and 12 day of age. The activation of innate immune response enhanced(p< 0.01) and the brown seaweed 1.0 and 2.0 % diets reduced(P< 0.05) the superoxide dismutase(SOD) activity in erythrocyte cytosol significantly. The activation of innate immune response elevated significantly the levels of peroxide and the activity of peroxidase in plasma, while the levels of dietary brown seaweed resulted in a significant linear increase in peroxidase activity in plasma of normal bird. Experience of the innate immune response in 4 week-old chicks reduced linearly the plasma level of peroxide with the level of brown seaweed and enhanced the plasma peroxidase activity. Also, the plasma of normal birds fed the brown seaweed showed higher level of peroxide and lower activity of peroxidase. The results indicated that dietary brown seaweed affected SOD and peroxidase activities in blood of broiler chicks during activation of innate immune response.

Recent advance in primary immune deficiency disorders (일차성 면역결핍질환의 최신 지견)

  • Kang, Hyoung-Jin;Shin, Hee Young;Ahn, Hyo Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.6
    • /
    • pp.649-654
    • /
    • 2009
  • The immune system is comprised of cells and molecules whose collective and coordinated response to the introduction of foreign substance is referred to as the immune response. Defense against microbes is mediated by the early reaction (innate immunity) and the late response (adaptive immunity). Innate immunity consists of the epithelial barrier, phagocytes, complement and natural killer cells. Adaptive immunity, a more complex defense reaction, consists of activation of later-developed lymphocytes that, when stimulated by exposure to infectious agents, increase in magnitude and defensive capabilities with each successive exposure. In this review we discuss recent advances in important primary immune deficiency disorders of innate immunity (chronic granulomatous disease, leukocyte adhesion deficiency) and adaptive immunity (severe combined immune deficiency, Wiskott- Aldrich syndrome).

Roles of Endoplasmic Reticulum Stress in Immune Responses

  • So, Jae-Seon
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.705-716
    • /
    • 2018
  • The endoplasmic reticulum (ER) is a critical organelle for protein synthesis, folding and modification, and lipid synthesis and calcium storage. Dysregulation of ER functions leads to the accumulation of misfolded- or unfolded-protein in the ER lumen, and this triggers the unfolded protein response (UPR), which restores ER homeostasis. The UPR is characterized by three distinct downstream signaling pathways that promote cell survival or apoptosis depending on the stressor, the intensity and duration of ER stress, and the cell type. Mammalian cells express the UPR transducers IRE1, PERK, and ATF6, which control transcriptional and translational responses to ER stress. Direct links between ER stress and immune responses are also evident, but the mechanisms by which UPR signaling cascades are coordinated with immunity remain unclear. This review discusses recent investigations of the roles of ER stress in immune responses that lead to differentiation, maturation, and cytokine expression in immune cells. Further understanding of how ER stress contributes to the pathogenesis of immune disorders will facilitate the development of novel therapies that target UPR pathways.

Prophylactic and Therapeutic Modulation of Innate and Adaptive Immunity Against Mucosal Infection of Herpes Simplex Virus

  • Uyangaa, Erdenebileg;Patil, Ajit Mahadev;Eo, Seong Kug
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.187-200
    • /
    • 2014
  • Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, $CD4^+$ Th1 T cells producing IFN-${\gamma}$ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.

Response Evaluation of Chemotherapy for Lung Cancer

  • Hwang, Ki-Eun;Kim, Hak-Ryul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.2
    • /
    • pp.136-142
    • /
    • 2017
  • Assessing response to therapy allows for prospective end point evaluation in clinical trials and serves as a guide to clinicians for making decisions. Recent prospective and randomized trials suggest the development of imaging techniques and introduction of new anti-cancer drugs. However, the revision of methods, or proposal of new methods to evaluate chemotherapeutic response, is not enough. This paper discusses the characteristics of the Response Evaluation Criteria In Solid Tumor (RECIST) version 1.1 suggested in 2009 and used widely by experts. It also contains information about possible dilemmas arising from the application of response assessment by the latest version of the response evaluation method, or recently introduced chemotherapeutic agents. Further data reveals the problems and limitations caused by applying the existing RECIST criteria to anti-cancer immune therapy, and the application of a new technique, immune related response criteria, for the response assessment of immune therapy. Lastly, the paper includes a newly developing response evaluation method and suggests its developmental direction.

Effect of Dietary Vitamin E on Growth Performance and Immune Response of Breeder Chickens

  • Lin, Y.F.;Chang, S.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.884-891
    • /
    • 2006
  • The effect of dietary vitamin E supplementation on immune responses was studied in breeder chickens during the maturing period. In experiment 1, 17-week old female birds were fed corn-soybean meal based diets supplemented with either 0, 40, 80, 120, or 160 mg vitamin E (all-rac-${\alpha}$-tocopherol acetate)/kg diet for 19 weeks. In experiment 2, 23-week old male birds were fed the corn-soybean meal based diet supplemented with either 0, 20, 40, 80 or 160 mg vitamin E/kg diet for 8 weeks. The chickens were evaluated for growth performance, antibody titer to sheep red blood cell (SRBC), Newcastle disease virus (NDV), infectious bursal disease virus (IBDV) and infectious bronchitis virus (IBV), and skin response to phytohemagglutinin-P (PHA-P). The results showed that supplemental vitamin E improved body weigh gain of laying pullets during peak-laying period but had no significant effect on growth performance of cockerels. For cockerels, addition of 20 mg vitamin E/kg diet significantly enhanced (p<0.05) immune response to SRBC compared to those added with 0, 80 and 160 mg vitamin E/kg diet; addition of 20 mg vitamin E/kg diet had higher (p<0.01) antibody titer to IBDV than those added with 40-160 mg vitamin E/kg diet. No significant effects on immune response were observed in laying pullets fed supplemental vitamin E. The findings suggest that moderate supplementation of vitamin E may enhance immune responses to selective antigens in cockerels but excessive vitamin E may depress specific immune response.

The Effectiveness of IL-12 Administration and Fusion on Tumor Antigen Sensitization Methods for Dendritic Cells Derived from Patients with Myelogenous Leukemia (골수성백혈병에서 배양한 수지상세포(Dendritic Cell)에 대한 종양항원 감작법으로 IL-12 첨가와 융합법의 효과)

  • Kim, Kee Won;Park, Suk Young;Hong, Young Seon
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • Backgroud: Immunotherapy using dendritic cells (DC) loaded with tumor antigens may represent a potentially effective method for inducing antitumor immunity. We evaluated the effectiveness of DC-based antitumor immune response in various conditions. Methods: DC were cultured from peripheral blood mononuclear cells (PBMNC) in myelogenous leukemia (ML) and lysates of autologous leukemic cells are used as tumor antigen. The effectiveness of interleukin-12 (IL-12) and CD40L (CD154) on the antigen presenting function of lysates-loaded DC was analyzed by proliferation, cytokine production, and cytotoxicity tests with activated PBMNC (mainly lymphocytes). For generating antigen-loaded DC, direct fusion of DC with ML was studied. Results: Antigen loaded DC induced significantly effective antitumor immune response against autologous leukemic cells. Administration of IL-12 on the DC based antitumor immune response showed higher proliferation activity, IFN-$\gamma$ production, and cytotoxic activity of PBMNC. Also, fused cell has a potent antitumor immune response. Conclusion: We conclude that lysates-loaded DC with IL-12 may be effectively utilized as inducer of antitumor immune reaction in ML and in vivo application with DC-based antitumor immunotherapy or tumor vaccination seems to be feasible.