• Title/Summary/Keyword: Impact of Fragment

Search Result 66, Processing Time 0.026 seconds

The Development of 20 mm Test Barrel with Replaceable Powder Chamber Type (약실교환방식의 20 mm 시험용 총열 개발)

  • Lee, Jin-Sung;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.630-638
    • /
    • 2011
  • A new smooth bore test barrel was developed to be used in sensitivity assessment test for explosives and fragment impact test. The bore diameter of the barrel is 20 mm, and the powder chamber is designed to be replaceable with the 12.7 mm, 20 mm and 30 mm type chamber. The test results showed the wide range of fragment velocity from 400 to 2000 m/s, included the fragment velocity requirement of the fragment impact test(alternate procedure #1) in MIL-STD-2105B. The stability of the bullet trajectory was checked by test shots and the structural safety of the system has been confirmed through the stress analysis and the interior ballistics analysis of the barrel.

Impact Test and Evaluation for HTPE IM Rocket Motor (HTPE 둔감 추진기관의 충격 시험 및 평가)

  • Kim, Chang-Kee;Lee, Do-Hyung;Yeon, Jeong-Mo;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.163-166
    • /
    • 2009
  • Bullet and fragment impact test with rocket motors was performed and characteristics of the results were analyzed. The material of the motor case was carbon epoxy composite. The motor was loaded with HTPE propellants to improve the insensitive munitions characteristics. In the tests, sound pressure and heat flux sensors were used to determine the category of response according to the standard. The reaction response of all of the HTPE motors impacted by bullet and fragment was judged as Type V burning.

  • PDF

Numerical Analysis of Steel-strengthened Concrete Panels Exposed to Effects of Blast Wave and Fragment Impact Load Using Multi-solver Coupling (폭풍파 및 파편 충돌에 대한 강판보강 콘크리트 패널의 복합적 수치해석)

  • Yun, Sung-Hwan;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.25-33
    • /
    • 2011
  • The impact damage behavior of steel-strengthened concrete panels exposed to explosive loading is investigated. Since real explosion experiments require the vast costs to facilities as well as the blast and impact damage mechanisms are too complicated, numerical analysis has lately become a subject of special attention. However, for engineering problems involving blast wave and fragment impact, there is no single numerical method that is appropriate to the various problems. In order to evaluate the retrofit performance of a steel-strengthened concrete panel subject to blast wave and fragment impact loading, an explicit analysis program, AUTODYN is used in this work. The multi-solver coupling methods such as Euler-Lagrange and SPH-Lagrange coupling method in order to improve efficiency and accuracy of numerical analysis is implemented. The simplified and idealized two dimensional and axisymmetric models are used in order to obtain a reasonable computation running time. As a result of the analysis, concrete panels subject to either blast wave or fragment impact loading without the steel plate are shown the scabbing and perforation. The perforation can be prevented by concrete panels reinforced with steel plate. The numerical results show good agreement with the results of the experiments.

Cross sectional area change of the dural-sac according to impact duration in a spinal motion segment FE model (척추운동분절 FE모델에서 충격시간에 따른 마미 단면적의 변화)

  • Kim, Y. E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • In this study the occlusion of dural-sac, the outer membrane of spinal cord in the lumbar region, was quantitatively analyzed using one motion segment finite element model. Occlusion was quantified by calculating cross sectional area change of dural-sac far different compressive impact duration(loading rate) due to bony fragment at the posterior wall of the cortical shell in vertebral body. Dural-sac was occluded most highly in the range of 8∼12 msec impact duration by the bony fragment intruding into the spinal canal. t=400 msec case 4% cross sectional area change was calculated, which is the same as the cross sectional area change under 6 kN of static compressive loading.

  • PDF

Roof tile frangibility and puncture of metal window shutters

  • Laboy-Rodriguez, Sylvia T.;Smith, Daniel;Gurley, Kurtis R.;Masters, Forrest J.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.185-202
    • /
    • 2013
  • The goal of this study was to investigate the vulnerability of roof tile systems and metal shutters to roof tile debris. Three phases addressed the performance of tile roof systems and metal shutters impacted by roof tile debris. The first phase experimentally evaluated the tile fragment size and quantity generated by a tile striking a tile roof system. The second phase experimentally quantified the puncture vulnerability of common metal panel shutter systems as a function of tile fragment impact speed. The third phase provided context for interpretation of the experimental results through the use of a tile trajectory model. The results provide supporting evidence that while metal panel window shutters provide significant protection against a prevalent form of windborne debris, these systems are vulnerable to tile fragment puncture in design level tropical cyclones. These findings correlate with field observations made after Hurricane Charley (2004).

Electron Impact Fragmentations of Chlorinated Organophosphorus Pesticides

  • Hong, Jong Gi;Kim, Do Gyun;Paeng, Gi Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.785-792
    • /
    • 2000
  • Mass spectral fragmentations of six chlorinated organophosphorus pesticides were investigated using electron impact mass spectrometry. Understanding the fragmentation pathways, based on the fragment ions of mass spectra, should be useful in the structural elucidation and chemical identification of these compounds. The pro-posed fragmentation pathways were verified by collision-induced dissociation B/E-linked scan spectra. ln most cases,the structures of characteristic fragment ions could be expected by the observation of the peak clusters due to 35Cl and 37Cl isotopes. According to substituted groups on phosphorus atom, phosphate and phospho-rothioate exhibited significantIy differentfragmentation patterns. Especially, phosphate and phosphorothioate with diethyl ester produced more diverse fragment ions than that with dimethyl ester.

Intracluster Ion/Molecule Reactions within 1,1-Difluoroethylene Homocluster

  • 이선영;최창주;정경훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.296-300
    • /
    • 1997
  • The intracluster ion/molecule reactions within 1,1-difluoroethene homocluster have been studied by electron-impact quadrupole mass spectrometry. When CH2CF2 seeded in helium is expanded and ionized by electron impact, two different types of ion/molecule association (polymerization) reaction products, i.e., (CH2CF2)n+ (n≥l) and (CF2CH2)qX+ (X=fragment species, q≤n), are formed. The higher association products, (CH2CF2)n+ (n=3, 4), have shown stronger intensities over the lower association product, (CH2CF2)2+, in the low electron impact energy region ( < 39 eV). These stronger intensities are interpreted in terms of the stabilization of these ions due to the ring formations over the dimer ion in this energy region. The evidence of ring formation mechanism is on the basis of the intensity distribution of fragments at various electron impact energy. In another typical branched-chain growth reaction of these compounds, the F-shift reaction path is found to be more favorable energetically than the H-shift via the fragment patterns of clusters and semi-empirical calculation.

Evaluation of Protective Performance of Protection Materials for Field and Structural Body by Ignition of 155mm Artillery Shell and C-4 Explosive (155mm 포탄 및 C-4 90kg 기폭에 의한 야전구축 방호자재 및 구조체용 신방호자재의 방호성능 평가)

  • Lee, In-Cheol;Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Suk-Bong;Hong, Won-Hee;Kim, Gyu-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.493-500
    • /
    • 2013
  • In this study, it was evaluated the protective performance of the protection material for filed of the army by impact of fragment from the explosion of 155mm artillery shell to propose the improvement items. And it was evaluated the protection materials for structural boby such as corrugated steel plate, concrete block, prevention paint of explosion, aluminum foam and concrete T-wall by impact of fragment of 155mm artillery shells and explosion-induced pressure of C-4 explosive. As a result, protective performance of the existing protective material was superior but reinforcement is necessary for secondary damage because sand is leaking. The protective performance of new protective materials was greater than existing protective materials. And it can be used for protective materials.

Numerical simulation of steel plate reinforced concrete panels exposed to impact loading using multi-solver technique (Multi-solver 기법을 이용한 강판보강 콘크리트 패널의 충돌 수치 시뮬레이션)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.590-595
    • /
    • 2008
  • In the present paper, the impact damage behavior of steel plate reinforced concrete panels exposed to shock impulsive loading and fragment impact loading is investigated. To evaluate the retrofit performance of a steel-strengthened concrete panels, a numerical experiment using a numerical simulation with AUTODYN, an explicit analysis program is introduced because a real explosion experiment requires the vast investment and expense for facilities as well as the deformation mechanisms are too complicated to be reproduced with a conventional closed-form analyses. The model for the analysis is simplified and idealized as a two-dimensional and axisymmetric case controled with geometry, boundary condition and material properties in order to obtain a resonable computation time. As a result of the analysis, panels subject to either shock loading or fragment loading without the steel plate reinforcement experience the perforation with spalled fragments. In addition, the panels reinforced with steel plate can prevent the perforation and provide the good mechanical effect such as the increase of global stiffness and strength through the composite action between the concrete slab and the steel plate.

  • PDF

Analysis of Dural-sac Cross Sectional Area Changes According to Vertical Impact rate (수직 충격률에 따른 척추 경막 단면적 변화 해석)

  • 김영은
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.421-425
    • /
    • 2003
  • In this study the occlusion of dural-sac. the outer membrane of spinal cord in the lumbar region. was quantitatively analyzed using one motion segment finite element model. Occlusion was quantified by calculating cross sectional area change of dural-sac for different compressive impact duration (loading rate) due to bony fragment at the posterior wall of the cortical shell in vertebral body. Dural-sac was occluded most highly in the range of 8∼12 msec impact duration by the bony fragment intruding into the spinal canal. $\Delta$t = 400 msec case 4 % cross sectional area change was calculated. which is the same as the cross sectional area change under 6 kN of static compressive loading.