• Title/Summary/Keyword: Impact signal

Search Result 533, Processing Time 0.026 seconds

A Pilot Study on Nondestructive Assessment of Compressive Strength Using Impact Force Response Signal (충격력 응답신호를 이용한 비파괴 압축강도 산정에 관한 기초연구)

  • Son, Moorak;Choi, Yoonseo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.5-9
    • /
    • 2019
  • This paper is to provide the results of a pilot study of the usability and possibility of impact force response signal induced from impacting an object for the assessment of compressive strength of various materials (rock, concrete, wood, etc.) nondestructively. For this study, a device was devised for impacting an object and measuring the impact force. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Wood and rock test specimens for different strengths were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total impact force signal energy which is assessed from integrating the impact force response signal induced from impacting an object.

A Study on the Signal Transmissibility of High Frequency Crash Pulse according to the Car Structure Difference (차체 구조 차이에 따른 충돌 고주파 신호 전달성 연구)

  • Park, Dongkyou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.8-15
    • /
    • 2013
  • Wide range frequency pulses occur in a car crash test. Until now, low frequency under 400Hz has been used to determine an airbag deployment criteria. Also, FIS (Front Impact Sensor) has been used to detect the crash pulse in early stage. Nowadays, technology to determine an airbag delpoyment criteria by using a high frequency crash pulse without FIS is being focused on. In this paper, the signal transmissibility of high frequency pulse for two different cars was studied. Also, signal transfer test of high frequency pulse was done by using a high speed ball impact. Signal runtime of the frontal impact is compared with that of the side impact. The signal transmissibility difference due to the car structure difference was discussed and structure change for improving the signal transmissibility was proposed.

An Automatic Diagnosis Method for Impact Location Estimation

  • Kim, Jung-Soo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.295-300
    • /
    • 1998
  • In this paper, a real time diagnostic algorithm fur estimating the impact location by loose parts is proposed. It is composed of two modules such as the alarm discrimination module (ADM) and the impact-location estimation module(IEM). ADM decides whether the detected signal that triggers the alarm is the impact signal by loose parts or the noise signal. When the decision from ADM is concluded as the impact signal, the beginning time of burst-type signal, which the impact signal has usually such a form in time domain, provides the necessary data fur IEM. IEM by use of the arrival time method estimates the impact location of loose parts. The overall results of the estimated impact location are displayed on a computer monitor by the graphical mode and numerical data composed of the impact point, and thereby a plant operator can recognize easily the status of the impact event. This algorithm can perform the diagnosis process automatically and hence the operator's burden and the possible operator's error due to lack of expert knowledge of impact signals can be reduced remarkably. In order to validate the application of this method, the test experiment with a mock-up (flat board and reactor) system is performed. The experimental results show the efficiency of this algorithm even under high level noise and potential application to Loose Part Monitoring System (LPMS) for improving diagnosis capability in nuclear power plants.

  • PDF

Study on Non-destructive Assessment of Compressive Strength of Rock Using Impact Force Response Signal (타격력 응답신호를 이용한 암석의 비파괴 압축강도 산정방법에 관한 연구)

  • Son, Moorak;Seong, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.13-19
    • /
    • 2022
  • This paper is to provide the results of usability of the impact force response signal induced from initial and successive rebound impacting a rock specimen for assessing the compressive strength of rock non-destructively. For this study, a device was devised for impacting a rock specimen and a system for measuring the impact force was set up. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Three different kinds of rock specimen were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal induced from initial and rebound impacts was compared with the directly measured compressive strength for each rock specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of rock can be assessed non-destructively using total impact force signal energy.

Nondestructive Assessment of Compressive Strength of Construction Materials Using Impact-Echo Response Signal (임팩에코 응답신호를 적용한 건설재료 비파괴 압축강도 산정)

  • Son, Moorak;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.17-21
    • /
    • 2017
  • This paper is to grasp the use of impact-echo response signal induced from impacting an object for the assessment of compressive strength of construction materials nondestructively and to propose the test results. For this study, an impact device was devised and used for impacting an object by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Concrete test specimens which had been mixed for different strengths were tested and the impact echo response signal was measured for each test specimen. The total sound signal energy which is assessed from integrating the impact-echo response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total sound signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total sound signal energy which is assessed from integrating the impact-echo response signal induced from impacting an object.

Acoustic Metal Impact Signal Processing with Fuzzy Logic for the Monitoring of Loose Parts in Nuclear Power Plang

  • Oh, Yong-Gyun;Park, Su-Young;Rhee, Ill-Keun;Hong, Hyeong-Pyo;Han, Sang-Joon;Choi, Chan-Duk;Chun, Chong-Son
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.5-19
    • /
    • 1996
  • This paper proposes a loose part monitoring system (LPMS) design with a signal processing method based on fuzzy logic. Considering fuzzy characteristics of metallic impact waveform due to not only interferences from various types of noises in an operating nuclear power plant but also complex wave propagation paths within a monitored mechanical structure, the proposed LPMS design incorporates the comprehensive relation among impact signal features in the fuzzy rule bases for the purposes of alarm discrimination and impact diagnosis improvement. The impact signal features for the fuzzy rule bases include the rising time, the falling time, and the peak voltage values of the impact signal envelopes. Fuzzy inference results based on the fuzzy membership values of these impact signal features determine the confidence level data for each signal feature. The total integrated confidence level data is used for alarm discrimination and impact diagnosis purposes. Through the perpormance test of the proposed LPMS with mock-up structures and instrumentation facility, test results show that the system is effective in diagnosis of the loose part impact event(i.e., the evaluation of possible impacted area and degree of impact magnitude) as well as in suppressing false alarm generation.

  • PDF

Application of Time-Frequency Analysis Methods to Loose Part Impact Signal (금속파편 감시 시스템에 대한 시간-주파수 해석 적용 연구)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.361-364
    • /
    • 2003
  • The safe operation and reliable maintenance of nuclear power plants is one of the most fundamental and important tasks. It is known that a loose part such as a disengaged and drifting metal inside of reactor coolant systems might lead to a serious damage because of their impact on the components of the coolant system. In order to estimate the impact position of a loose par, three accelerometers attached to the wall of the coolant system have been used. These accelerometers measure the vibration of the coolant system induced by loose part impact. In the conventional analysis system, the low pass filtered version of the vibration data was used for the estimation of the position of a loose part. It is often difficult to identify the initial point of the impact signal by using just a low passed time signal because the impact wave is dispersed during propagation into the sensor. In this paper, the impact signal is analysed by use of various time frequency methods including the short time Fourier transform(STFT), the wavelet transform, and the Wigner-Vill distribution for finding a convenient way to identify the starting point of a impact signal and their advantages and limits are discussed.

  • PDF

Case_study of detecting loose part by acceleration signal (가속도 충격파형을 이용한 기기의 결함 위치분석 및 진단사례)

  • Yoo, Mu-Sang;Park, Seung-Do;Park, Hyeon-Cheol;Choi, Nak-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.463-468
    • /
    • 2007
  • The abnormal sound of generator frame is analyzed by a acceleration signal. The spike-like time signal is major characteristics of impacting force. The distributional map of vibration level is one of visualization method. With map, noise source was easily detected. After de_assembly of generator, loose part of internal component is the source of impact force by mechanical movement of stator inherently. In contact condition of part with clearance, the level of impact signal is different at each revolution and impact signal did not happens periodically.

  • PDF

Vibration Characteristics of the Electric Car due to Joint Discontinuity (철로 이음매에 기인하는 전동차의 진동특성 분석)

  • 임병덕;최연선
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.287-290
    • /
    • 1998
  • Wheel impact due to the joint discontinuity is a major source of uncomfortable vibration in the railway vehicles. Since the impact signal is measured using sensors attached to the bogie and its energy content is small compared to the other vibrations from the machineries such as motors and gear systems, the seperation of the impact signal is generally difficult. In this study a technique using an evolutionary spectrum is proposed in order to estimate the impact signal due to the rail joint discontinuity.

  • PDF

Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques (단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정)

  • Cho, Sungjong;Jeong, Hyunjo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.715-722
    • /
    • 2012
  • A structural health monitoring (SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal (TR) and inverse filtering (IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

  • PDF