• Title/Summary/Keyword: Impregnant

Search Result 27, Processing Time 0.032 seconds

Self Cleaning Hydrophilic Impregnant of Concrete Structure (자기세정 콘크리트 표면보호재 적용에 관한 연구)

  • Song, Hun;Kim, Young-Yup;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.645-648
    • /
    • 2006
  • Normally, deterioration in the concrete structure is due to carbonation and chloride ion attack. Therefore, concrete structure is needed to surface protection for increase durability using impregnant. Impregnant classify into two large groups in polymeric and silicate materials. Silicate impregnant is included silicate and alkali silicate(sodium and lithium silicate). Thus, this study is concerned with self cleaning hydrophilic property of concrete structure using silicate impregnant. From the experimental test result, TEOS and lithium silicate make good use of hydrophilic impregnant.

  • PDF

Durability of Hydrophilic Alkali Silicate Impregnant of Concrete Structure (알칼리 실리케이트계 침투성 콘크리트 표면보호재의 내구특성)

  • Song, Hun;Lee, Jong-Kyu;Chu, Yong-Sik;Kim, Young-Yup
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.91-94
    • /
    • 2007
  • It is essential every concrete structure should continue to perform its intended functions, that is maintain its required strength and durability, during the service life. However, deterioration occurs more progressively from the outside of concrete exposed to severe conditions. Deterioration in the concrete structure is due to carbonation and chloride ion attack. Therefore, concrete structure is needed to surface protection for increase durability using impregnant. Impregnant classify into two large groups in polymeric and silicate materials. Silicate impregnant is included silane and alkali silicate(sodium and lithium silicate). Thus, this study is concerned with carbonation and chloride ion resistance of self cleaning hydrophilic impregnant of concrete structure using lithium and potassium silicate. From the experimental test result, lithium and potassium silicate have a good properties as a carbonation and chloride ion resistance. Lithium and potassium silicate make good use of hydrophilic impregnant.

  • PDF

The Pore-filling Effect of Bulk Graphite According to Viscosity of Impregnant (함침재의 점도에 따른 벌크흑연의 기공 채움 효과)

  • Lee, Sang-Min;Lee, Sang-Hye;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.101-107
    • /
    • 2021
  • Pores produced by carbonization in bulk graphite process degrade the mechanical and electrical properties of bulk graphite. Therefore, the pores of bulk graphite must be reduced and an impregnation process needs to be performed for this reason. In this study, bulk graphite is impregnated by varying the viscosity of the impregnant. The pore volume and pore size distribution, according to the viscosity of the impregnant, are analyzed using a porosimeter. The total pore volume of bulk graphite is analyzed from the cumulative amount of mercury penetrated. The volume for a specific pore size is interpreted as the amount of mercury penetrating into that pore size. This decreases the cumulative amount of mercury penetrating into the recarbonized bulk graphite after impregnation because the viscosity of the impregnant is lower. The cumulative amount of mercury penetrating into bulk graphite before impregnation and after three times of impregnation with 5.1cP are 0.144 mL/g and 0.125 mL/gm, respectively. Therefore, it is confirmed that the impregnant filled the pores of the bulk graphite well. In this study, the impregnant with 5.1 cP, which is the lowest viscosity, shows the best effect for reducing the total pore volume. In addition, it is confirmed by Raman analysis that the impregnant is filled inside the pores. It is confirmed that phenolic resin, the impregnant, exists inside the pores through micro-Raman analysis from the inside of the pore to the outside.

A Study on Durability Improvement for Concrete Structures Using Surface Impregnant (표면침투제를 이용한 콘크리트의 내구성 향상에 대한 연구)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.79-88
    • /
    • 2007
  • Concrete structures undergo degradation of durability performance and it generally propagates to the structural problems. Recently. a lot of materials for surface protection for concrete are developed, however, performance is not clearly improved due to the difficulties such as repair construction technique and quality of materials for repairing. In this study, liquid inorganic impregnant for concrete structures is developed and durability performance for impregnated concrete specimens is carried out. Furthermore, the performances of the concrete specimens with developed impregnant is also compared with those of the specimens with impregnant conventionally used. Additional CSH gel is formed through the reaction of calcium hydroxide ($Ca(OH)_2$) and impregnant with silicate. As a result of the reaction, impregnated concrete is evaluated to have more denser surface and resistance to deterioration. Finally it is experimentally verified that the concrete specimens with developed impregnant show better durability performance than normal specimens and those with conventional impregnant.

Analysis of Densification Process of Carbon/Carbon Composites with Pitch as an Impregnant

  • Oh, Seh-Min;Park, Yang-Duk
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.240-244
    • /
    • 1998
  • The analytical method was developed to calculate efficiency of densifying carbon/carbon (C/C) composites using coal tar pitch as a matrix precursor at each cyle. Three factors were defined in analyzing the densification process: impregnation efficiency, retention efficiency, and overall densification efficiency. The relationships developed were applied to the experimental results for three densification cycles of C/C composites with pitches as an impregnant to evaluate the factors which may depend on the impregnant and on the route of carbonization. The impregnation efficiency increased with the repeated process cycles whereas the retention efficiency decreased irrespective of the impregnant and carbonization route. Carbonization route P+A+G, in which pressure carbonizationl (P) and graphitization (G) were done before after atmospheric pressure carboniztion (A) respectively, using impregnant of high carbon yields was the most effective method in densifying C/C composites.

  • PDF

Reforming Property of Tile and Concrete Surface layer Using Self-cleaning Concrete Impregnant (Self-cleaning 침투성 함침제의 적용에 따른 타일 및 콘크리트 표층부의 개질특성)

  • Song, Hun;Jeon, Chan-Soo;Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.4
    • /
    • pp.61-68
    • /
    • 2013
  • Concrete structure is not the only material vulnerable to physical and chemical processes of deterioration associates with severe conditions. Deterioration of the concrete structure, however, occurs more progressively from the outside of the concrete exposed to severe conditions. Especially, Carbonation, chloride ion attack is more important factor of concrete durability. This study is interested in manufacturing the self-cleaning concrete surface impregnant including TEOS, lithium silicate for the repair of the exposed concrete surface and the color concrete requiring the advanced function in view of the concrete appearance. Form the results, TEOS and lithium silicate are very effective that increasing the concrete durability using self-cleaning concrete impregnant. Self-cleaning concrete impregnant specimens is satisfied with performance requirement of KS standard in adhesion test in tension but the reinforcement of concrete substrate is slight. So, the self-cleaning concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

Selection of Concrete Surface Impregnant through Durability Tests (내구성 실험을 통한 최적 표면침투제의 선정)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min;Kim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.77-86
    • /
    • 2007
  • The repair technique utilizing surface impregnant is widely used due to its simple construction procedures and economical benefit. Surface protection through this reparing technique cannot increase the bearing capacity of concrete members much but increase the durability performance and service life efficiently. In this study, fundamental tests such as water suction and permeation are performed for concrete specimens with several organic/inorgarnic impregnant and suitable impregnant is selected on the basis of the results. Finally, durability tests such as carbonation, freezing and thawing, and chloride attack are carried out for the concrete specimens with selected impregnant and it is experimentally verified that they have good resistance to deteriorations.

Adhesion Characteristic and Porosity Change of Alkali Silicate Impregnant of Concrete (Silicate계 콘크리트 함침제 도포에 따른 부착특성 및 공극변화)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lim, Young-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.276-282
    • /
    • 2010
  • There are the impregnating layer formation by surface protective materials or impregnants and the adhesion method by polymer, FRP sheet or steel plate in the surface protective method of concrete structure. The surface impregnation method by impregnants improves the durability of concrete structure by modifying the structure of the concrete surface and also have a merit that can be shortly applied in place without the decrease of concrete surface appearance and is easily applied again. This study is interested in manufacturing the concrete surface impregnants including lithium and potassium silicate for the repair of the exposed concrete and the color concrete requiring the advanced function in view of the concrete appearance. The durability and porosity properties was tested for the review of application. The result of this study show that the effective content of silicate ranges 5 to 20% and the separate application of the first impregnant and the second impregnant is effective for the optimum performance. The adhesion in tension is slightly increased but the reinforcement of concrete substrate is slight. So, the concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

Electric Characteristics on the Insulating Paper with Varnish-Impregnant (바니쉬 함침이 절연지에 미치는 영향)

  • Kim, Pil-Hwan;Kim, Ju-Han;Lee, Won-Yeong;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.180-182
    • /
    • 2004
  • We have investigated characteristics of varnish and oil impregnant. When transformers are manufactured with some moisture and varnish impregnant not entirely dried, those should be caused by factors that deteriorate the electrical or mechanical property after installation. Therefore, in this study we experienced moisture content of the new insulating paper and the varnish impregnant paper in the ratio of time for confirming factors that deteriorate the paper characteristics. Besides, we investigated a property study that was experienced the value of dielectric strength and tensile strength as no serviced insulating samples of transformer.

  • PDF

Changes in Flexural Strength and Electrical Resistivity of Bulk Graphite According to the Viscosity of Impregnant (함침재의 점도에 따른 벌크흑연의 굽힘강도 및 전기비저항 변화)

  • Lee, Sang-Min;Lee, Sang-Hye;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.108-114
    • /
    • 2021
  • In the manufacturing of bulk graphite, pores produced by vaporization and discharge of volatile materials in binders during carbonization reduce the density of bulk graphite, which adversely affects the electrical conductivity, strength and mechanical properties. Therefore, an impregnation process is introduced to fill the pores and increase the density of bulk graphite. In this study, bulk graphite is prepared by varying the viscosity of the impregnant. The microstructure of bulk graphite is observed. The flexural strength and electrical resistivity are measured. As the viscosity of the impregnants decreases and the number of impregnations increases, it is shown that the number of pores decreases. The density before impregnation is 1.62 g/㎤. The density increases to 1.67 g/㎤ and porosity decreases by 18.6 % after three impregnations using 5.1 cP impregnant, resulting in the best pore-filling effect. After three times of impregnation with a viscosity of 5.1 cP, the flexural strength increases by 55.2 % and the electrical resistivity decreases by 86.76 %. This shows that a slight increase in density due to the pore-filling effect improves the properties of bulk graphite.