• Title/Summary/Keyword: Improved Minima Controlled Recursive Averaging

Search Result 7, Processing Time 0.03 seconds

Speech Enhancement Based on Improved Minima Controlled Recursive Averaging Incorporating GSAP (전역 음성 부재 확률 기반의 향상된 최소값 제어 재귀평균기법을 이용한 음성 향상 기법)

  • Song, Ji-Hyun;Bang, Dong-Hyeouck;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.104-111
    • /
    • 2012
  • In this paper, we propose a novel method to improve the performance of the improved minima controlled recursive averaging (IMCRA). From an examination for various noise environment, it is shown that the IMCRA has a fundamental drawback for the noise power estimate at the offset region of continuity speech signals. Espectially, it is difficult to obtain the robust estimates of the noise power in non-stationary noisy environments that is rapidly changed the spectral characteristics such as babble noise. To overcome the drawback, we apply the global speech absence probability (GSAP) conditioned on both a priori SNR and a posteriori SNR to the speech detection algorithm of IMCRA. With the performance criteria of the ITU-T P.862 perceptual evaluation of speech quality (PESQ) and a composite measure test, we show that the proposed algorithm yields better results compared to the conventional IMCRA-based scheme under various noise environments. In particular, in the case of babble 5 dB, the proposed method produced a remarkable improvement compared to the IMCRA ( PESQ = 0.026, composite measure = 0.029 ).

Speech Enhancement Based on IMCRA Incorporating noise classification algorithm (잡음 환경 분류 알고리즘을 이용한 IMCRA 기반의 음성 향상 기법)

  • Song, Ji-Hyun;Park, Gyu-Seok;An, Hong-Sub;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1920-1925
    • /
    • 2012
  • In this paper, we propose a novel method to improve the performance of the improved minima controlled recursive averaging (IMCRA) in non-stationary noisy environment. The conventional IMCRA algorithm efficiently estimate the noise power by averaging past spectral power values based on a smoothing parameter that is adjusted by the signal presence probability in frequency subbands. Since the minimum of smoothing parameter is defined as 0.85, it is difficult to obtain the robust estimates of the noise power in non-stationary noisy environments that is rapidly changed the spectral characteristics such as babble noise. For this reason, we proposed the modified IMCRA, which adaptively estimate and updata the noise power according to the noise type classified by the Gaussian mixture model (GMM). The performances of the proposed method are evaluated by perceptual evaluation of speech quality (PESQ) and composite measure under various environments and better results compared with the conventional method are obtained.

Low-Complexity Speech Enhancement Algorithm Based on IMCRA Algorithm for Hearing Aids (보청기를 위한 IMCRA 기반 저연산 음성 향상 알고리즘)

  • Jeon, Yuyong;Lee, Sangmin
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.363-370
    • /
    • 2017
  • In this paper, we proposed a low-complexity speech enhancement algorithm based on a improved minima controlled recursive averaging (IMCRA) and log minimum mean square error (logMMSE). The IMCRA algorithm track the minima value of input power within buffers in local window and identify the speech presence using ratio between input power and its minima value. In this process, many number of operations are required. To reduce the number of operations of IMCRA algorithm, minima value is tracked using time-varying frequency-dependent smoothing based on speech presence probability. The proposed algorithm enhanced speech quality by 2.778%, 3.481%, 2.980% and 2.162% in 0, 5, 10 and 15dB SNR respectively and reduced computational complexity by average 9.570%.

Speech Enhancement Based on Modified IMCRA Using Spectral Minima Tracking with Weighted Subband Selection (서브밴드 가중치를 적용한 스펙트럼 최소값 추적을 이용하는 수정된 IMCRA 기반의 음성 향상 기법)

  • Park, Yun-Sik;Park, Gyu-Seok;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.89-97
    • /
    • 2012
  • In this paper, we propose a novel approach to noise power estimation for speech enhancement in noisy environments. The method based on IMCRA (improved minima controlled recursive averaging) which is widely used in speech enhancement utilizes a rough VAD (voice activity detection) algorithm which excludes speech components during speech periods in order to improves the performance of the noise power estimation by reducing the speech distortion caused by the conventional algorithm based on the minimum power spectrum derived from the noisy speech. However, since the VAD algorithm is not sufficient to distinguish speech from noise at non-stationary noise and low SNRs (signal-to-noise ratios), the speech distortion resulted from the minimum tracking during speech periods still remained. In the proposed method, minimum power estimate obtained by IMCRA is modified by SMT (spectral minima tracking) to reduce the speech distortion derived from the bias of the estimated minimum power. In addition, in order to effectively estimate minimum power by considering the distribution characteristic of the speech and noise spectrum, the presented method combines the minimum estimates provided by IMCRA and SMT depending on the weighting factor based on the subband. Performance of the proposed algorithm is evaluated by subjective and objective quality tests under various environments and better results compared with the conventional method are obtained.

Comparison of Noise Reduction Algorithm for Smart TV in VoIP Conference Facility (스마트TV향 VoIP 컨퍼런스 기능을 위한 잡음제거 알고리즘의 성능비교)

  • Seo, Kwang-Duk;Choi, Hong-Jae;Kim, Hyoung-Gook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.482-483
    • /
    • 2011
  • 본 논문에서는 스마트TV향 VoIP(Voice over Internet Protocol) 컨퍼런스 기능을 위한 잡음제거 알고리즘의 성능비교 하였다. 기존에 연구 되어져 있는 Improved Minima Controlled Recursive Averaging(IMCRA)방식과 Gaussian분포 기반의 잡음제거 알고리즘, IMCRA방식과 Gamma분포 기반의 잡음제거 알고리즘, IMCRA방식과 Mel-filter를 적용한 잡음제거 알고리즘, R&L 알고리즘들의 방식을 비교하였으며, 성능 비교를 위해 각 알고리즘을 통해 나온 다양한 잡음 환경에서의 잡음이 제거된 신호의 PESQ와 연산속도를 비교한다.

  • PDF

Gain Compensation Method for Codebook-Based Speech Enhancement (코드북 기반 음성향상 기법을 위한 게인 보상 방법)

  • Jung, Seungmo;Kim, Moo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.165-170
    • /
    • 2014
  • Speech enhancement techniques that remove surrounding noise are stressed to preprocessor of speech recognition. Among the various speech enhancement techniques, Codebook-based Speech Enhancement (CBSE) operates efficiently in non-stationary noise environments. But, CBSE has some problems that inaccurate gains can be estimated if mismatch occur between input noisy signal and trained speech/noise codevectors. In this paper, the Normalized Weighting Factor (NWF) is calculated by long-term noise estimation algorithm based on Signal-to-Noise Ratio, compensated to the conventional inaccurate gains. The proposed CBSE shows better performance than conventional CBSE.

Noise Statistics Estimation Using Target-to-Noise Contribution Ratio for Parameterized Multichannel Wiener Filter (변수내장형 다채널 위너필터를 위한 목적신호대잡음 기여비를 이용한 잡음추정기법)

  • Hong, Jungpyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1926-1933
    • /
    • 2022
  • Parameterized multichannel Wiener filter (PMWF) is a linear filter that can control the trade-off between residual noise and signal distortion using the embedded parameter. To apply the PMWF to noisy inputs, accurate noise estimation is important and multichannel minima-controlled recursive averaging (MMCRA) is widely used. However, in the case of the MMCRA, the accuracy of noise estimation decreases when a directional interference is involved into the array inputs. Consequently, the performance of the PMWF is degraded. Therefore, we propose a noise power spectral density (PSD) estimation method for the PMWF in this paper. The proposed method is based on a consecutive process of eigenvalue decomposition on noisy input PSD, estimation of the target component contribution using directional information, and exponential weighting for improved estimation of the target contribution. For evaluation, four objective measures were compared with the MMCRA and we verify that the PMWF with the proposed noise estimation method can improve performance in environments where directional interfereces exist.