• Title/Summary/Keyword: Impulsive current

Search Result 52, Processing Time 0.032 seconds

Analysis of Offshore Wind Tower against Impulsive Breaking Wave Force by P-Y Curve

  • Kim, Nam-Hyeong;Koh, Myung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.385-391
    • /
    • 2015
  • In offshore, various external forces such as wind force, tidal current and impulsive breaking wave force act on offshore wind tower. Among these forces, impulsive breaking wave force is especially more powerful than other forces. Therefore, various studies on impulsive breaking wave forces have been carried out, but the soil reaction are incomplete. In this study, the p-y curve is used to calculate the soil reaction acting on the offshore wind tower when an impulsive breaking wave force occurs by typhoon. The calculation of offshore wind tower against impulsive breaking wave force is applied for the multi-layered soil. The results obtained in this study show that although the same wave height is applied, the soil reaction generated by impulsive breaking wave force is greater than the soil reaction generated by wave force.

An Experimental Study on the Characteristics of the Impulsive Wave Discharged from the Open End of a Bend Pipe (곡관출구로부터 방출되는 펄스파의 특성에 관한 실험적 연구)

  • 이동훈;김희동;뢰척구준명
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.406-413
    • /
    • 2001
  • The current study depicts and experimental work of the impulsive wave discharged from the exit of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with Mach number from 1.02 to 1.20 is employed to obtain the impulsive wave propagating outside the exit of the pipe bends. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The impulsive waves are visualized by a Schlieren optical system. A computation work using the two-dimensional, unsteady, compressible Euler equation is also carried out to represent the experimented impulsive waves. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can play a role of passive control agianst the impulsive wave.

  • PDF

The Effect of Partial Closure of the Duct Exit on the Impulsive Wave Impinging upon a Flat Plate (평판에 충돌하는 펄스파에 미치는 관출구 부분폐쇄의 영향)

  • Shin, Hyun-Dong;Lee, Young-Ki;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1595-1600
    • /
    • 2004
  • When a shock wave arrives at a duct, an impulsive wave is discharged from the duct exit and causes serious noise and vibration problems. In the current study, the characteristics of the impulsive wave discharged from a partial closed duct exit is numerically investigated using a CFD method. The Yee-Roe- Davis's total variation diminishing(TVD) scheme is used to solve the axisymmetric, unsteady, compressible Euler equations. With several partial closed duct exits, the Mach number of the incident shock wave $M_s$ and the distance L/D between the duct exit and a flat plate are varied in the range of $M_s$ = 1.01 ${\sim}$ 1.50 and L/D = 1.0 ${\sim}$ 4.0, respectively. The results obtained show that the magnitude of the impulsive wave impinging upon the flat plate strongly depends upon $M_s$, L/D and the partial closure of duct exit. The impulsive wave on the flat plate can be considerably alleviated by the partial closure of duct exit and, thus, the present method can be a passive control for the impulsive wave.

  • PDF

New coefficients to find natural period of elevated tanks considering fluid-structure-soil interaction effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • The main purpose of the current study is to develop the new coefficients for consideration of soil-structure interaction effects to find the elevated tank natural period. Most of the recommended relations to find the natural period just assumed the fixed base condition of elevated tank systems and the soil effects on the natural period are neglected. Two different analytical systems considering soil-structure- fluid interaction effects are recommended in the current study. Achieved results of natural impulsive and convective period, concluded from mentioned models are compared with the results of a numerical model. Two different sets of new coefficients for impulsive and convective periods are developed. The values of the developed coefficients directly depend to soil stiffness values. Additional results show that the soil stiffness not only has significant effects on natural period but also it is effective on liquid sloshing wave height. Both frequency content and soil stiffness have significant effects on the values of liquid wave height.

Lagged Cross-Correlation of Probability Density Functions and Application to Blind Equalization

  • Kim, Namyong;Kwon, Ki-Hyeon;You, Young-Hwan
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, the lagged cross-correlation of two probability density functions constructed by kernel density estimation is proposed, and by maximizing the proposed function, adaptive filtering algorithms for supervised and unsupervised training are also introduced. From the results of simulation for blind equalization applications in multipath channels with impulsive and slowly varying direct current (DC) bias noise, it is observed that Gaussian kernel of the proposed algorithm cuts out the large errors due to impulsive noise, and the output affected by the DC bias noise can be effectively controlled by the lag ${\tau}$ intrinsically embedded in the proposed function.

Thermal diffusion experiment of impulsive heat in subcooled liquid nitrogen (과냉 액체질소 내에서 순간적 열확산 실험)

  • Choi, J.H.;Ha, J.C.;Byun, J.J.;Chang, H.M.;Kim, H.M.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • Transient heat transfer caused by an impulsive heating in subcooled liquid nitrogen is investigated experimentally. This study is part of out ongoing efforts directed to a stable cryogenic cooling system lot superconducting fault current limiters (SFCL). A thin heater attached by epoxy on one surface of a GFRP plate is immersed in liquid-nitrogen bath at temperatures between 77 K and 55 K. A strong heat flux up to $150W/cm^2$ is generated lot 100 ms, and the temperature of the heater sulfate is measured as a function of time. The behavior of bubbles on the heating surface can be explained by comparing the measured temperature history for vertical and two horizontal (up and down) orientations. It is concluded that the subcooling of liquid nitrogen below 70 K is very effective in suppressing bubbles, resulting in better thermal protection and faster recovery from an impulsive heat.

A Computational Study of the Impulsive Wave Discharged from a Circular Tube (원형관으로부터 방출되는 펄스파에 대한 수치해석적 연구)

  • Lee, Young-Ki;Kweon, Yong-Hun;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.850-856
    • /
    • 2004
  • When a shock wave arrives at the open end of a tube, an impulsive wave is discharged from the tube exit and causes serious noise and vibration problems. In the current study, the effect of the cross-sectional area of a circular tube on the impulsive wave is investigated using computational methods. Marten-Yee's TVD scheme was employed to solve axisymmetric, unsteady, compressible Euler equations. With a change in the cross-sectional area of the tube, the Mach number of an incident shock wave is varied between 1.01 and 1.50. The results obtained show that the magnitude of the impulsive wave strongly depends upon the Mach number of the incident shock wave and the cross-sectional area of the tube. It is also found that for a given cross-sectional area of the tube, the impulse wave has strong directivity to the tube axis.

How Perceived Price Discount Influence on the Impulsive Consumption in the Context of Online Limited-Time Promotion: Moderating Effect of Perceived Time Pressure

  • Weiyi, Luo;Young-Chan, Lee
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.209-232
    • /
    • 2022
  • Purpose In the current environment of online shopping, the cost for consumers to obtain the information they need is decreasing, and the price of products is becoming more transparent, leading to increased price competition among enterprises for similar products. Given the widespread usage of limited-time promotion as a marketing method for enterprises in the context of e-commerce, it is great meaning to study and reveal the internal influence mechanism of limited-time promotion on consumers' impulsive consumption. Design/methodology/approach Based on the S-O-R theory, this study constructs a model of consumers' impulsive consumption in the context of e-commerce from the perspective of perceived price discount, with evoking sense and pleasure as mediating variables and perceived time pressure as moderating variables. Findings The results show that perceived price discount has a significant positive impact on evoking sense and pleasure. Evoking sense has a significant positive impact on pleasure. Both evoking sense and pleasure have a significant positive impact on consumers' impulsive consumption. Meanwhile, perceived time pressure plays a significant moderating role between perceived price discount and evoking sense, between perceived price discount and pleasure, and between evoking sense and consumers' impulsive consumption. Finally, based on the above findings, this study provides effective suggestions for e-commerce participants in the formulation of limited-time promotion strategies.

Experimental Study of Impulsive High Current Generating Apparatus (충격전류발생장치의 실험적연구)

  • An Kyun Kim
    • 전기의세계
    • /
    • v.24 no.4
    • /
    • pp.73-76
    • /
    • 1975
  • In this study, a design scheme of an impulsive high current generating device is presented. The device is proved to be effective in producing rather complex type of the permanent magnet. Principally, the apparatus designed same to the ordinary potential transformer or current transformer, but, it has a certain differences that the primary winding of many turns is excited by d.c. source and the secondary winding of a few turns induce low voltage and high current at the instant when opening a switch in the primary circuit. This paper does not include magnet production process. Rather, it deals with the analytical studies of the devices, the designing procedure of the experimental setup, and some results from the experimental data are presented as a preliminary study. The experimental results are found to agree well with the theoritical analysis presented in this paper.

  • PDF

Simulated Analysis for the Transient Impedance Behaviors of Counterpoises Subjected to the Impulsive Currents (임펄스전류에 의한 매설지선의 과도임피던스특성에 대한 모의해석)

  • Joe, Jeong-Hyeon;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1861-1868
    • /
    • 2009
  • A ground electrode subjected to lightning surge current shows the transient impedance behaviors. The ground electrode for protection against lightning should be evaluated in view of the transient grounding impedance and conventional grounding impedance, not ground resistance. The transient impedance characteristics of ground electrodes are influenced by the shape of ground electrode and the soil characteristics, as well as the waveform of lightning surge current. In order to propose a simulation method of analyzing the transient impedance characteristics of the grounding system in practical use, this paper suggests a theoretical analysis method of distributed parameter circuit model to simulate the transient impedance characteristics of counterpoise subjected to lightning surge current. EMTP and Matlab programs were employed to compute the transient grounding impedances of three counterpoises with different lengths. As a consequence, the simulated results using the proposed distributed parameter circuit model are in good agreement with the measured results.